
- •Лекции по Биофизике
- •Содержание
- •I. Термодинамика биологических процессов 10
- •II. Кинетика биологических процессов 20
- •III. Квантовая биофизика 32
- •Введение в биофизику Предмет биофизики
- •История развития биофизики
- •Что изучает биофизика?
- •Раздел 1. Общая биофизика. Включает в себя термодинамику биологических систем, кинетику биологических процессов, фотобиологию и молекулярную биофизику.
- •Раздел II. Биофизика клетки. Предметом данного раздела являются принципы организации и функционирования живой клетки и ее фрагментов, биологических мембран.
- •Особенности биофизических методов
- •I. Термодинамика биологических процессов Основные понятия термодинамики.
- •Законы термодинамики
- •Неравновесная термодинамика
- •II. Кинетика биологических процессов Введение
- •Молекулярность и порядок реакции
- •Кинетика реакции нулевого порядка
- •Кинетика прямой реакции первого порядка
- •Кинетика обратимой реакции первого порядка
- •Кинетика реакции второго порядка
- •Сложные реакции
- •Зависимость скорости реакции от температуры
- •Кинетика ферментативного катализа
- •III. Квантовая биофизика Классификация и стадии фотобиологических процессов
- •Природа света и его физические характеристики. Понятие кванта. Орбитальная структура атомов и молекул и энергетические уровни.
- •Взаимодействие света с веществом
- •Пути размена энергии возбужденного состояния молекулы
- •Люминесценция (флюоресценция и фосфоресценция), ее механизмы, законы и методы исследования.
- •Миграция энергии. Виды и условия миграции. Правила Ферстера
- •Фотохимические реакции. Законы фотохимии
- •IV. Молекулярная биофизика Предмет молекулярной биофизики
- •Методы исследования биомакромолекул
- •2. Термодинамические исследования
- •3. Оптические (спектральные) методы
- •Силы внутримолекулярного взаимодействия биомакромолекул
- •II. Водородные связи (заряд – дипольные взаимодействия)
- •Пространственная структура белка
- •V. Структура и функции биомембран Введение
- •Функции биологических мембран
- •Химический состав мембран
- •Липид-липидные взаимодействия. Динамика липидов в мембране
- •Белки мембраны и их функции
- •Модель биологических мембран
- •Сигнальная функция биологических мембран
- •VI. Транспорт веществ через мембраны Введение
- •Классификация видов транспорта
- •1. Относительно изменения энергии в процессе переноса веществ транспорт подразделяется на активный и пассивный.
- •2. Относительно количества переноса веществ через мембрану выделяют:
- •Методы изучения транспорта
- •Пассивный транспорт и его виды
- •Активный транспорт
- •VII. Пассивные электрические свойства биологических объектов Общие положения
- •Действие постоянного электрического тока на биологические объекты. Эдс поляризации
- •Статическая и поляризационная емкость
- •Виды поляризации в биологических тканях
- •Проводимость биологических объектов для переменного тока
- •VIII. Биофизика электровозбудимых тканей. Электрогенез Общие положения
- •Электродный потенциал
- •Диффузионный потенциал
- •Доннановское равновесие
- •Ионная теория электрогенеза Бернштейна
- •Теория постоянного поля и потенциал покоя (пп)
- •Потенциал действия (пд)
- •Современные методы регистрации биопотенциалов
- •Ионная природа потенциала действия (пд). Формальное описание ионных токов
- •Проведение возбуждение по нервным волокнам
- •IX. Биофизика синаптической передачи Общие положения
- •Электрические синапсы
- •Химический синапс
- •Основные положения о судьбе медиатора в химическом синапсе (Шеррингтон, 1897 г.)
- •X. Биофизика сокращения Введение
- •Скелетные мышцы
- •Молекулярные механизмы мышечного сокращения
- •Биомеханика скелетной мышцы
- •Миокард
- •Гладкая мускулатура
- •XI. Биофизика кровообращения Введение. Классификация сосудистого русла
- •Работа сердца как насоса
- •Энергетика кровообращения
- •Основные положения гемодинамики. Закона Гагена –Пуазейля
- •Применимость закона Гагена –Пуазейля
- •XII.Биофизика дыхания Введение
- •Основные объемы и емкости легкого
- •Основной уравнение биомеханики дыхания. Уравнение Родера
- •Работа дыхания
- •XIII. Биофизика всасывания и выделения Введение
- •Ассиметричный эпителий и его функции
- •Методы изучения трансцеллюлярного транспорта.
- •XIV. Биофизика анализаторов Общие положения
- •Орган зрения
- •Орган слуха
- •Список используемой литературы
- •Лекции по биофизике Учебно-методическое пособие
Ионная теория электрогенеза Бернштейна
Современная теория электрогенеза вытекает исторически из положений Бернштейна (1940), связавшему впервые ионную проницаемость мембран с природой биопотенциалов.
Ее основные положения:
В состоянии покоя мембрана проницаема только для ионов калия.
Ионы калия, выходя из клетки, создают потенциал, величина которого рассчитывается по уравнению Нернста:
где [К+]i и [К+]e – концентрации внутриклеточных – i и внеклеточных ионов – e, соответственно.
Этот потенциал равновесный, так как различие концентраций [К+]i и [К+]e присутствует в клетках постоянно.
В качестве доказательства своей теории Бернштейн указывал на зависимость мембранного потенциала от температуры, изменений внеклеточной концентрации ионов калия [К+]e, т.е. от расчетных показателей уравнения Нернста.
Теория постоянного поля и потенциал покоя (пп)
Современные представления об электрогенезе основаны на положениях теории постоянного поля. Ее основные создатели: Ходжкин, Хаксли и Катц (1949) разработали ряд упрощений для возможного анализа протекания электрических процессов на мембране:
Ионы движутся в мембране по градиенту концентрации и электрического поля, как в растворе.
Напряженность электрического поля в мембране постоянна и потенциал падает линейно ее толщины по мере удаления от источника электрического поля.
Мембрана гомогенна, имея постоянную диэлектрическую проницаемость по всей толщине.
Концентрация ионов в мембране на границе с раствором пропорциональна концентрации ионов в самом растворе.
Из первого выражения вытекает, что плотность ионного тока через мембрану:
,
где:
zi –валентность i-го иона, V- потенциал в точке, x – расстояние по толщине мембраны от наружней ее границы. Т.е.плотность ионного тока определяется разностью между диффузионным потоком i-го иона по концентрационному градиенту (1-ое слагаемое) и противоположно направленным потоком этого иона, обусловленным электрическим полем, возникшем при его диффузии (2-ое слагаемое).
При постоянстве электрического поля dV/dx =const=V/a, где а – тощина мебраны константа проницаемости мембраны (Pi) определяется относительной подвижностью и растворимостью в мембране:
,
где:
βi – коэффициент распределения i-го иона между водным раствором и мембраной, ui –подвижность этого иона в электрическом поле.
На основании представленных положений теории постоянного поля Ходжкин, Гольдман и Катц вывели уравнение зависимости плотности ионных токов от мембранного потенциала и ионной проницаемости:
Предполагая, что при потенциале покоя (ПП) суммарный ионный ток равен нулю Ходжкин, Гольдман и Катц вывели уравнение:
,
где:
[К+]i, [Na+]i, [Сl]i и [К+]e [Na+]e и [Cl]e – концентрации внутриклеточных – intra и внеклеточных ионов – extra соответственно,
PK, PNa и PCl – проницаемость соответствующих ионов.
Для ПП гигантского аксона кальмара соотношение:
Таким образом, ПП имеет в основном калиевую природу, что и определяет его вклад в изменения мембранного потенциала при модуляции концентрации ионов калия. Распределение ионов между клеткой и средой при ПП устанавливается на постоянном уровне, и суммарный ионный ток равняется нулю:
Постоянно существующий градиент, поддерживающий пассивный поток ионов через клеточную мембрану, требует процессов, его восстанавливающих. Их выполняет система активного транспорта – Mg2+-зависимая Na+/K+-АТФ-аза, которая осуществляет противоградиентный транспорт ионов Na+ и K+. Энергозависимый процесс происходит в режиме одновременного выброса 3-х ионов Na+ из клетки и закачивания 2-х ионов K+ внутрь. Создание дополнительного дефицита внутриклеточного содержимого в положительном заряде позволило режим работы данной системы, кроме энергозависимого, считать еще и электрогенным.