
- •1.Ковалентная химическая связь. Особенности ковалентной связи: направленность и насыщаемость. Молекулы с нечетным числом электронов.
- •2.Понятие о скорости химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных системах.
- •3.Уравнения реакций:
- •1.Радиусы атомов,их изменение в периодах и группах Периодической системы. Зависимость кислотно-основных свойств соединения от радиуса центрального атома.
- •Сверху вниз по подгруппе:
- •2.Роль молекул растворителя в процессах электролитической диссоциации.
- •3.Уравнения реакций.
- •1.Форма и пространственное расположение s-,p-, и d- орбиталей в атоме.
- •2.Реакции самоокисления-самовосстановления (диспропорционирования).
- •3.Уравнения реакций.
- •1.Периодические и непериодические свойства атомов элементов. Полные и неполные электронные аналоги.
- •2.Основные положения теории кислот и оснований Аррениуса. Зависимость кислотно-основных свойств соединений от степени окисления центрального атома.
- •3.Уравнения реакций.
- •1.Характеристики химической связи – энергия, длина, кратность, полярность.
- •2.Химическое равновесие. Константа равновесия. Расчет равновесных концентраций веществ.
- •3.Уравнения реакций.
- •1.Энергия ионизации; сродство к электрону; электроотрицательность атомов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы.
- •2.Электролитическая диссоциация сильных и слабых электролитов в водных растворах. Вычисление концентраций ионов.
- •3.Уравнения реакций.
- •1.Планетарная модель атома водорода Резерфорда, постулаты Бора.
- •2.Стандартная энтропия веществ. Изменение энтропии при изменении агрегатного состояния веществ. Расчет изменения стандартной энтропии в химической реакции.
- •3.Уравнения реакций.
- •1.Координационная теория Вернера. Аммиакаты, кристаллогидраты, ацидокомплексы. Поведение комплексных соединений в растворе.
- •2.Влияние кислотности раствора на величину окислительно-восстановительного потенциала. Выбор среды для проведения окислительно-восстановительного процесса.
- •3.Уравнения реакций.
- •1.Химическое равновесие. Динамический характер химического равновесия. Влияние внешних факторов (температура, давление) на состояние равновесия.
- •2.Понятие о скорости химической реакции. Порядок и молекулярность химической реакции. Представление о механизмах химических реакций.
- •3.Уравнения реакций.
- •1.Гибридизация атомных орбиталей и геометрическая конфигурация молекул и ионов.
- •2.Амфотерность гидроксидов с точки зрения теории электролитической диссоциации. Реакции амфотерных гидроксидов с кислотами и основаниями.
- •3.Уравнения реакций
- •1.Комплексные соединения. Химическая связь в комплексных соединениях и строение комплексных ионов. Электролитическая диссоциация комплексов, ступенчатые и общая константы нестойкости.
- •2.Закон Гесса и следствия из него. Применение закона Гесса для расчета изменения энтальпии в химических реакциях.
- •3.Уравнения реакций.
- •1.Квантовомеханическая модель строения атома водорода. Квантовые числа электрона, форма s-,p- и d- орбиталей.
- •2.Равновесия в водных растворах солей, содержащих многозарядные катионы металлов. Вычисление pH (приведите примеры).
- •3.Уравнения реакций.
3.Уравнения реакций
2 K2CrO4+3 NaNO2+5 H2SO4 (разб.)-> 3 NaNO3 + Cr2(SO4)3 + 2 K2SO4 + 5 H2O
AlCl3 + 3H2O = 3HCl + Al(OH)3
Билет №22.
1.Комплексные соединения. Химическая связь в комплексных соединениях и строение комплексных ионов. Электролитическая диссоциация комплексов, ступенчатые и общая константы нестойкости.
Комплексные соединения— частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений (координационная теория) была предложена в 1893 г. А. Вернером.
Комплексные соединения мало диссоциируют в растворе (в отличие от двойных солей). Комплексные соединения могут содержать комплексный малодиссоциирующий анион ([Fe(CN)6]3−), комплексный катион ([Ag(NH3)2]+), либо вообще не диссоциировать на ионы (соединения типа неэлектролитов, например карбонилы металлов). Комплексные соединения разнообразны и многочисленны.
Согласно теории Вернера, любой элемент после насыщения его обычных валентностей способен проявлять ещё и дополнительную валентность – координационную. Именно за счёт этой валентности и происходит образование соединений высшего порядка – комплексных соединений.
В каждом комплексном соединении различают внутреннюю и внешнюю сферы. Более тесно связанные частицы внутренней сферы называют комплексным ионом или комплексом (заключают в квадратные скобки).
Центральный ион или атом внутренней сферы комплекса, вокруг которого группируются ионы или молекулы, называется комплексообразователем или ядром комплекса, а координируемые им во внутренней сфере ионы или молекулы – лигандами или аддендами. Роль комплексообразователей чаще всего выполняют катионы переходных металлов, реже анионы или нейтральные атомы, имеющие вакантные орбитали. Примерами лигандов могут служить анионы: Г-, OH-, CN-, CNS-, NO2-, CO32-, C2O42-; нейтральные молекулы: Н2О, NH3, CO, NO, Г2, N2H4, NH2-CH2-CH2-NH2(этилендиамин), аминоуксусная кислота NH2-CH2-COOH. Координационное число (К.Ч.) или координационная валентность – общее количество лигандов, входящих во внутреннюю сферу комплекса. Известны координационные числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 12. Чаще других встречаются 4, 6 и 2. Эти числа соответствуют наиболее симметричной геометрической конфигурации комплекса – октаэдрической (6), тетраэдрической (4) и линейной (2). Координационная валентность зависит от природы комплексообразователя и лигандов, от степени окисления комплексообразователя, от соотношения размеров комплексообразователя и лигандов, концентрации раствора комплексного соединения.
Чем выше степень окисления комплексообразователя, тем больше координационное число: [Cu+(NH3)2]+, но [Cu2+(NH3)4]2+.
Незаряженные лиганды обычно присоединяются к комплексообразователю в большем числе, чем заряженные: [Сo(H2O)6]2+, но [СoCl4]2.-.
Например, с ионами Cl-, Br-, I- алюминий проявляет К.Ч. 4, а с меньшим ионом F- - 6: K[AlCl4],но K3[AlF6].
Метод валентных связей является весьма наглядным способом описания комплексных соединений. В его основе лежат следующие положения:
Связь между комплексообразователем и лигандами донорно-акцепторная σ-типа. Лиганды предоставляют электронные пары, а ядро комплекса – свободные орбитали.
Орбитали центрального атома, участвующие в образовании связи, подвергаются гибридизации, которая определяет геометрию комплекса. Тип гибридизации определяется числом, природой и электронной структурой лигандов.
Дополнительное упрочение комплекса обусловлено тем, что наряду с σ-связями могут возникать и π-связи. Это происходит, если занятая электронами орбиталь центрального атома перекрывается с вакантной орбиталью лиганда.
Магнитные свойства комплекса объясняются исходя из заселённости орбиталей. При наличии неспаренных электронов комплекс парамагнитен. Спаренность электронов обусловливает диамагнетизм комплексного соединения.
Необходимо отметить, что внутренняя и внешняя сферы комплексного соединения сильно различаются по устойчивости; частицы, находящиеся во внешней сфере, связаны с комплексным ионом преимущественно электростатическими силами и легко отщепляются в водном растворе.
Эта диссоциация называется первичной, она протекает почти нацело по типу диссоциации сильных электролитов. Лиганды, находящиеся во внутренней сфере, связаны с нейтральным атомом значительно прочнее и отщепляются лишь в небольшой степени. Обратимый распад внутренней сферы комплексного соединения носит название вторичной диссоциации. Например, диссоциацию комплекса [Ag(NH3)2]Cl можно записать так:
[Ag(NH3)2]Cl[Ag(NH3)2]++Сl- — первичная диссоциация [Ag(NH3)2]+Ag++2NH3 — вторичная диссоциация
Г Вторичная диссоциация характеризуется наличием равновесия между комплексной частицей, центральным атомом и лигандами. В этом можно убедиться на основании следующих реакций. Если на раствор, содержащий комплексный ион [Ag(NH3)2]+, подействовать раствором какого-нибудь хлорида, то осадка не образуется, хотя из растворов обычных солей серебра при добавлении хлоридов выделяется осадок хлорида серебра. Очевидно, концентрация ионов серебра в аммиачном растворе слишком мала, чтобы при введении в него даже избытка хлорид-ионов можно было бы достигнуть величины произведения растворимости хлорида серебра (ПРAgCl=1,8•10-10). Однако после прибавления к раствору комплекса иодида калия выпадает осадок иодида серебра. Это доказывает, что ионы серебра все же имеются в растворе. Как ни мала их концентрация, но она оказывается достаточной для образования осадка, т.к. произведение растворимости иодида серебра AgI составляет только 1•10-16, т.е. значительно меньше, чем у хлорида серебра. Точно так же при действии сероводорода получается осадок сульфида серебра Ag2S, произведение растворимости которого равно 10-51.
Диссоциация ионов [Ag(NH3)2]+, согласно приведенному выше уравнению, как и диссоциация всякого электролита, подчиняется закону действия масс и может быть охарактеризована соответствующей константой равновесия, называемой константой нестойкости комплексного иона.
Константы нестойкости для различных комплексных ионов весьма различны и могут служить мерой устойчивости комплекса.
Константы нестойкости, в выражения которых входят концентрации ионов и молекул, называются «концентрационными». Более строгими и не зависящими от концентраций и ионной силы раствора являются константы нестойкости, содержащие вместо концентраций активности ионов и молекул. В разбавленных растворах эти два различных выражения констант нестойкости совпадают друг с другом.
Величина общей константы нестойкости равна произведению всех ступенчатых констант.