
- •1. Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •2. Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •4. Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •17. Моделирование сезонной составляющей при помощи фиктивных переменных.
- •18. Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •19.Схема Гаусса–Маркова (на примере модели Оукена).
- •20.Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •29.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов
- •30.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •35. Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •37.Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •38.Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •39. Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •41. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •42.Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •43.Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •44.Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •45. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •46. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •47. Основные характеристики временного ряда.
- •48. Стационарный временной ряд. Белый шум.
- •49.Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка). Сверхидентифицируемость параметров поведенческого уравнения.
- •60. Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка)
- •61. Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга)
- •62. Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым м-ом наименьших квадратов на примере простейшей макромодели Кейнса
- •63. Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
В
общем случае экономическая модель может
включать в себя несколько текущих
эндогенных переменных. Линейная
экономическая модель в общем случае
имеет спецификацию
(1).
Пример
– модель спроса и предложения на
конкурентном рынке:
(2)
Модель (1) называют моделью из одновременных уравнений, поскольку какие-то эндогенные переменные модели в некоторых поведенческих уравнениях могут играть роль объясняющих переменных, например, в модели (2) объясняющей эндогенной переменной в обоих уравнениях является цена р.
Моделям (1) присущи 2 проблемы – проблема идентификации и проблема оценивания параметров структурной формы.
Рассмотрим
первую проблему на примере модели (2).
Можно ли определить параметры а0, а1, b0,
b1
поведенческих уравнений? Построим
графики спроса и предложения.
Для
наблюдений в рамках модели доступна
равновесная цена
и
уровень спроса и предложения по
равновесной цене
.Знание
точки Е не позволяет определить ни
параметры кривой спроса, ни предложения.
Поясним эту мысль, составив приведенную форму (случайные остатки пока опустим)
(3).
Рассматривая (3), констатируем, что эта
форма состоит из двух уравнений с
четырьмя искомыми параметрами. Определить
их однозначно нельзя. В этом и заключается
неидентифицируемость обоих уравнений
модели (2). Например, если (3) разрешить
относительно а1 и b1
:
,
то задаваясь любыми подходящими а0, b0
получим то или иное решение уравнений
(3).
Опр: Поведенческое уравнение модели (1) является идентифицируемым, если по известным коэффициентам приведенной формы модели можно определить коэффициенты данного поведенческого уравнения.
Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
В общем случае экономическая модель может включать в себя несколько текущих эндогенных переменных. Линейная экономическая модель в общем случае имеет спецификацию (1).
Пример
– модель Кейнса
(2)
Модель (1) называют моделью из одновременных уравнений, поскольку какие-то эндогенные переменные модели в некоторых поведенческих уравнениях могут играть роль объясняющих переменных, например, в модели (2) У объясняет С.
Моделям (1) присущи 2 проблемы – проблема идентификации и проблема оценивания параметров структурной формы.
Рассмотрим вторую проблему на примере модели Кейнса (2). Проблема состоит в зависимости (коррелированности) эндогенных объясняемых переменных и случайных остатков соответствующих поведенческих уравнений.
Запишем
приведенную форму модели (2):
(3)
Рассматривая
второе уравнение в (3), мы констатируем,
что Y
является линейной функцией случайного
остатка u.
По теории вероятности
,
значение
Y
коррелирует со значением случайного
остатка u.
Следовательно, в силу наличия ненулевой
ковариации в уравнениях наблюдений
модели Кейнса оказывается нарушенной
последняя предпосылка теоремы ГМ.
Нарушение этой предпосылки порождает
несостоятельность оценок параметров
модели (1), вычисленных МНК, ВМНК или
ОМНК.
Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка). Сверхидентифицируемость параметров поведенческого уравнения.
Запишем исследуемое поведенческое уравнение модели СЛОУ в виде
(1),
где G
– количество текущих эндогенных
переменных, К – кол-во предопределенных
переменных.
- условие нормализации, оно означает,
что в исследуемом поведенческом уравнении
объясняемая эндогенная переменная
выражена в явном виде через объясняющие
переменные и, возможно, через другие
эндогенные переменные.
Поведенческое
уравнение в компактной записи:
.
Теорема.
Пусть поведенческое уравнение (1)
идентифицируемо. Тогда справедливо
неравенство
(2), где
Кi,
—
количество предопределенных переменных
модели, входящих в i-е
уравнение; Gi
—
количество эндогенных переменных
модели, входящих в i-е
уравнение модели.
Неравенство (2) позволяет определить неидентифицируемое уравнение, но не позволяет определить идентифицируемое. Такое определение может дать критерий (необходимое и достаточное условие).
Если
имеет место неравенство
,
то говорят о сверхидентифицируемости
i-того
уравнения модели. В этой ситуации
количество уравнений в системе превышает
количество ее неизвестной, то есть
система является переопределенной и
совместной.