
- •1. Введение в метрологию
- •1.1. Общие положения
- •1.2. Система единиц физических величин
- •1.3. Измерения
- •1.4. Качество измерения
- •1.5. Погрешности измерений
- •1.6. Случайные погрешности
- •1.7. Систематические погрешности
- •Значение критерия Аббе
- •1.8. Обработка результатов косвенных
- •1.9. Пример обработки результатов косвенных многократных измерений сопротивления
- •1. Обработка результатов прямых измерений напряжения
- •2. Обработка результатов прямых измерений силы тока
- •1.10. Средства измерения (си)
- •1.10.1. Классификация средств измерений
- •1.10.2. Эталоны
- •1.10.3. Метрологические характеристики средств измерения
- •1.10.4. Класс точности средств измерений
- •1.11. Поверочная схема
- •Р и с. 1.2. Поверочная схема
- •1.12. Стандартные образцы состава и свойств
- •1.13. Стандартные справочные данные
- •1.14. Метрологическая служба (мс)
- •1.14.1. Виды метрологических служб России
- •1.14.2. Государственная метрологическая служба (гмс)
- •1.14.3. Сферы распространения государственного
- •1.14.4. Утверждение типа средства измерения
- •1.14.5. Поверка средств измерений
- •1.14.6. Лицензирование деятельности юридических
- •1.14.7. Методики выполнения измерения (мви)
- •1.14.8. Сертификация средств измерений
- •1.14.9. Метрологические службы государственных
- •1.14.10. Калибровка средств измерений
- •2. Техническое регулирование
- •2.1. Понятие о техническом регулировании
- •2.2. Принципы технического регулирования
- •2.3. Технические регламенты
- •2.4. Порядок разработки, принятия, изменения
- •2.5. Стандартизация и стандарты
- •2.5.1. Виды стандартизации
- •2.5.2. Национальная стандартизация России
- •2.6. Подтверждение соответствия.
- •2.6.1. Общие сведения.
- •2.6.2. Добровольное подтверждение соответствия.
- •2.6.3. Обязательное подтверждение соответствия.
- •2.6.4. Обязательная сертификация.
- •3. Нормирование точности в машиностроении.
- •3.1. Понятие о точности и взаимозаменяемости.
- •3.2. Соединения.
- •3.3. Размеры, отклонения и допуск.
- •3.4. Понятие о посадках.
- •3.5. Виды отклонений геометрических параметров объектов.
- •3.6. Система допусков и посадок для гладких цилиндрических соединений.
- •3.7. Обозначение допусков и посадок в чертежах и другой документации.
- •3.9. Нормирование параметров шероховатости.
- •Высота неровности по десяти точкам rz – среднее расстояние между пятью наиболее высокими выступами Hi и пятью наиболее глубокими впадинами, находящимися на базовой длине:
- •3.10. Отклонения и допуски формы поверхностей и профилей.
- •3.11. Отклонения и допуски расположения поверхностей.
- •Отклонение от соосности относительно базовой оси.
- •3.12. Нормирование точности резьбовых соединений.
- •3.12.1. Нормирование точности крепежных метрических резьб.
- •3.12.2. Допуски и посадки метрической крепежной резьбы для соединений с зазором.
- •13. Нормирование точности угловых параметров.
- •Р ис. 3.47. Расположение полей угловых допусков.
- •3.14. Нормирование гладких конических соединений.
- •3.15. Нормирование точности зубчатых передач и колес.
- •3.15.2. Общие положения.
- •13.15.3. Допуски и отклонения параметров зубчатых цилиндрических передач и колес.
- •3.15.3.2. Нормы кинематической точности включают:
- •3.15.3.3. Нормы плавности работы.
- •3.15.3.4. Нормы контакта зубьев.
- •3.15.3.5. Нормы бокового зазора.
- •Рекомендации по выбору посадок.
- •4.3 Обеспечение взаимозаменяемости гладких соединений.
- •4.3.1.Определение посадок.
- •4.3.2 Выбор шероховатости поверхностей сопрягаемых деталей.
- •4.3.3 Выбор методов и средств контроля деталей гладких соединений.
- •4.3.4 Выбор посадок для установки колец подшипников качения.
- •4.3.5 Расчет и выбор посадок с зазором.
- •4.3.6. Расчет и выбор посадок с натягом.
- •4.4. Расчет посадок по теории вероятности
- •Порядок расчета в общем виде.
- •4.5. Обеспечение взаимозаменяемости резьбовых соединений.
- •4.6. Обеспечение взаимозаменяемости шлицевых соединений.
- •4.7. Обеспечение взаимозаменяемости шпоночных соединений.
- •4.8. Обеспечение взаимозаменяемости зубчатых передач.
- •4.9. Проектирование гладких калибров.
- •4.10. Требования к оформлению курсовой работы.
- •5. Лабораторный практикум.
- •5.1 Лабораторная работа №1. Контроль гладких калибров.
- •Конструкция и принцип работы микротара
- •Принцип работы и устройство вертикального оптиметра икв
- •Расчет исполнительных размеров гладких предельных пробок
- •Содержание отчета
- •Контрольные вопросы
- •5.2 Лабораторная работа № 2. Настройка регулируемых скоб
- •Описание конструкции регулируемых скоб
- •Расчет исполнительных размеров гладких калибров-скоб
- •Настройка регулируемой скобы на заданный размер
- •Содержание отчета
- •Контрольные вопросы
- •5.3 Лабораторная работа № 3Определение и измерение параметров шероховатости поверхности
- •5.12. Общий вид порфилогрофа-порфилометра мод. 201.
- •Порядок выполнения работы
- •Измерение и определение параметров шероховатости по профилограмме
- •3. Определение параметров шероховатости по профилограмме
- •Содержание отчета
- •Контрольные вопросы
- •5.4 Лабораторная работа №4 Измерение шероховатости поверхности на профилометре модели 170623
- •5.4.1. Общая характеристика профилометра
- •5.4.2 Назначение профилометра.
- •5.4.3 Технические характеристики.
- •5.5. Лабораторная работа № 5 Измерение параметров резьбы метчика
- •Конструкция инструментального микроскопа бми
- •Настройка микроскопа бми на измерение резьбы метчика
- •Измерение наружного диаметра d
- •Измерение внутреннего диаметра
- •Измерение среднего диаметра d
- •Измерение погрешности шага резьбы метчика dр
- •Измерение половины угла профиля
- •Содержание отчета
- •3.3. Результаты измерения половины угла профиля
- •Контрольные вопросы
- •5.6 Лабораторная работа № 6 Измерение цилиндрических зубчатых колес
- •Выбор допусков и отклонений цилиндрических зубчатых колес
- •Определение степени точности и вида сопряжения по результатам измерения
- •Установление степени кинематической точности
- •Установление вида сопряжения зубчатого колеса
- •Измерение смещения исходного контура
- •Содержание отчета
- •Контрольные вопросы
- •5.7 Лабораторная работа № 7. Измерение биения поверхностей
- •1. Цель лабораторной работы
- •2.Описание лабораторной работы
- •3. Измерение полного радиального биения.
- •4. Порядок выполнения работы
- •5. Содержание отчета
- •Контрольные вопросы
- •Лабораторная работа № 8 Периодическая калибровка штангенциркуля.
- •5.8.1 Общие сведения о калибровке.
- •5.8.2. Порядок проведения калибровки.
- •Содержание отчета.
- •Контрольные вопросы.
- •5. 9.Лабораторная работа № 9 Калибровка микрометра
- •Содержание отчета:
- •Контрольные вопросы:
- •Содержание
- •1.Введение в метрологию
- •1.1Общие положения
- •3.15.2 Общие положения
3.5. Виды отклонений геометрических параметров объектов.
Геометрическими параметрами идеальных объектов являются:
Размеры их поверхностей
Расстояния между поверхностями и их осями или плоскостями симметрии.
Размеры, определяющие взаимное расположение поверхностей, их осей или плоскостей симметрии.
Реальные объекты отличаются от идеальных. Эти отличия оцениваются отклонениями. Для геометрических параметров отклонениями являются: отклонения линейных и угловых размеров, неровности поверхности – шероховатость, отклонения формы и отклонения расположения поверхностей или их профилей.
Отклонения присущи любым видом деятельности и функционирования технических объектов. Размеры этих отклонений определяются достигнутым в данный период времени уровнем совершенства деятельности и функционирования, в зависимости от которого устанавливаются нормы – предельные значения размеров отклонений, которые оформляются документально в виде нормативно-технической документации: регламентах, стандартах, и отражаются в конструкторской документации и др. Для реализации их на практике необходимы, в первую очередь, освоение сущности этих норм кадрами-исполнителями и, во-вторую очередь, реализация этих норм техническими решениями, соответствующими процессами и оборудованием.
Вышеуказанные отклонения геометрических параметров составляют элементную точность геометрических параметров машин.
3.6. Система допусков и посадок для гладких цилиндрических соединений.
Отклонение гладких цилиндрических и плоских поверхностей нормированы системами допусков и посадок, представляющих собой научно обоснованные и построенные по определенным принципам таблицы и ряды допусков, отклонений, посадок с поясняющим текстом. В зависимости от интервалов размеров в машиностроении применяются следующие системы, оформленные международными и национальными стандартами для следующих интервалов размеров.
до 1 мм
от 1 до 500 мм
св. 500 до 3150 мм
св. 3150 до 10000 мм
св. 10000 до 40000 мм
Наибольшее применение в машиностроении имеет система для размеров от 1 до 500 мм, которая наиболее полно разработана и научно обоснована.
Система допусков и посадок для размеров от 1 до 500 мм построена на основе следующих семи принципов.
Квалитеты.. Установлено двадцать квалитетов точности, которым присвоены номера: 0, 01, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. Номер квалитета определяет уровень точности: чем больше номер, тем ниже точность. Так, в машиностроении квалитеты 6, 7 определяют высокую точность соединений, 8, 9 – среднюю точность соединений, 10, 11 – низкую точность соединений. Квалитеты с 13 по 18 применяются для свободных поверхностей, не образующих соединения. При этом квалитеты 12 и 13 определяют высокую точность свободных поверхностей, 14 и 15 – среднюю, 16, 17, 18 – низкую.
Коэффициенты точности. Для количественной оценки точности каждому квалитету присвоен коэффициент точности а – число, количественно характеризующее уровень точности, определимый квалитетом. Например, для 6-го квалитета а6 = 10, 7-го а7 = 16, 8-го – 25, 9-го – 40, т.е. коэффициенты точности представляют геометрическую прогрессию со знаменателем q=1,6. Для любого, квалитета с номером N коэффициент точности определяется аN = 10·1,6N-6.
Единица допуска – единица измерения допуска. Для вычисления допуска в зависимости от размера установлена в этой системе единица допуска i, вычисляемая для многих квалитетов по зависимости i = 0,45 ³√d+ 0,001 d, мкм, где d в мм. Допуск для квалитета с номером N вычисляется ТN = аNi = 10·1,6N-6 (0,45 ³√d+ 0,001 d). Из этого следует, что а=
- коэффициент точности – это отношение значения размера допуска к единице допуска. Точность обработки поверхностей деталей определяется коэффициентом точности. Пример. Необходимо сравнить точность двух деталей
1 d1 = 125 мм и Т1 = 60 мкм; 2 d2 = 64 мм, Т2 = 30 мкм
Определим коэффициенты точности
(8-ой
квалитет)
(7-ой
квалитет)
Чтобы изготовить деталь и проконтролировать ее размеры необходимо знать предельные размеры, либо предельные отклонения. По размеру и допуску их определить нельзя.
Основные отклонения. Для координации поля допуска относительно нулевой линии и определения предельных отклонений установлены основные отклонения, обозначаемые буквами латинского алфавита и в порядке их расположения в нем. При этом основные отклонения для отверстий обозначаются заглавными буквами, а для валов – строчечными. В системе имеются две таблицы: одна содержит заглавные буквы, т.е. основные отклонения для отверстий, а вторая строчечные, т.е. для валов. В каждой таблице для каждой буквы для различных интервалов размеров указаны каким- верхним или нижним- является основное отклонение, и число со знаками плюс или минус. Знак указывает, в какую сторону от нулевой линии следует расположить поле допуска: знак плюс означает- вверх от нулевой линии, а минус – вниз. Число указывает на каком расстоянии в мкм следует расположить поле допуска. Как правило, если основное отклонение больше нуля, то оно является нижним, и верхнее отклонение определяется суммой основного отклонения и допуска. Например, дано Т = 40 мкм, ЕО = +20. ЕI = +20 мкм, ЕS = 20+40 = 60 мкм. Если основное отклонение меньше нуля, то оно является, как правило, верхним. Если ЕО0, то ЕS = ЕО ЕI = ЕО-Т. Например, Т=40 мкм, ЕО = -20 мкм. Значит ЕS = -20 мкм, ЕI = -20-40 = -60 мкм. Для буквы H ЕI = 0, ЕS = +Т, для h еs = 0, еi = -Т. Для букв jS, JS еs =+Т/2, ЕS = T/2, еi = -T/2, ЕI = -Т/2.
Интервалы размеров. Весь интервал от 1 до 500 мм разделен на 13 более мелких интервалов с начальным dн и конечным диаметром dk. Отклонения и допуски относят к интервалам, а значения их определяет по тому интервалу, в котором находится конкретный размер. При этом допуск вычисляется по среднему геометрическому размеру данного интервала: dcг=
Т, мкм, где
в мм. Интервалы размеров
от
1 до 3 dcp
св.
3 до 6 dcp=
св.
6 до 10 dср
Система отверстия и система вала. Система допусков разделена на две части, т.е. таблицы предельных отклонений сгруппированы в два вида таблиц, построенных одинаково. Первая группа таблиц содержит предельные отклонения для валов с множеством квалитетов и основных отклонений для валов и представляет систему отверстия. Система отверстия – это такая совокупность посадок, допусков и отклонений, в которой применяется для отверстия одно основное отклонение H с любым квалитетом. Валы применяются с любыми основными отклонениями в зависимости от требуемого характера соединения. В системе вала применяются валы только с основным отклонением h с любым квалитетом, а отверстия применяются с любыми основными отклонениями в зависимости от необходимого характера соединения. Таким образом, в системе отверстия необходимая посадка обеспечивается выбором основного отклонения вала, а в системе вала - выбором основного отклонения отверстия. Так как в системе отверстия последние применяются только с основным отклонением Н, то в ней для обеспечения различных соединений требуется значительно меньшее количество различных отверстий, чем в системе вала. В связи с тем, что обработка отверстия обходится значительно дороже по затратам средств, то обеспечение различных соединений в системе отверстия обходится значительно дешевле, чем в системе вала. Поэтому система отверстия имеет приоритет в применении. Система вала применяется только в необходимых случаях, когда нельзя применить систему отверстия или когда применяются готовые валы без обработки. Случаев применения системы валов три:
1)Когда применяются готовые валы, обработка которых не допустима или нецелесообразна. Примером первого случая является применение в объекте деталей, узлов и др., у которых присоединительные поверхности окончательно обработаны, например, установка подшипника по его наружному кольцу, который является валом.
2)Примером второго случая является применение в объекте калиброванных валов без механической обработки. Такие валы изготавливаются на металлургических заводах холодной калибровкой с точностью 9-ого квалитета.
3)Когда вал постоянного по длине номинального размера соединяется с несколькими отверстиями по различным посадкам. Например, соединения шпонки со втулкой и валом, соединения поршневого кольца с поршнем и втулкой шатуна и др. Однако, для применения системы вала необходимо техническое обоснование.
7.Стандартная температура. Система обеспечивает заданный характер соединений и содержащихся в ней отклонений только при температуре 20С. Отклонение от этой температуры приводит к изменению характера соединений и действительных отклонений размеров деталей. Точные измерения, сборка точных соединений должны производиться при температуре 20С. Измерение при другой температуре приводит к систематической погрешности, которая в простейших случаях может быть вычислена по следующей зависимости
∆=α[αg(θq-20°)-du(θu-20°)],
где d- номинальные размеры,αg ,αu - коэффициенты теплового линейного расширения материалов соответственно измеряемой детали и средства измерения, θg ,θu- их температуры. При θg=θu = 20 = 0.