Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
на распечатку.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
194.58 Кб
Скачать

6. Линейные дефекты кристаллов, их влияние на свойства кристаллов.

Линейные дефекты Разрыв связи идёт не моментально, а «эстафетно». Осн линейн диформацией явл дислокация – явл наиболее важной среди всех дефектов, т.к. их поведение определяет механические свойства кристаллических тел. Наиболее просто можно представить в виде незаверш сдвига крист реш-ки. Вокруг края экстраплоскости тянется область несовершенства. Дислокация может перемещаться по кристаллам. Осн хар-кой дислокационной структуры явл. Плотность дислокации – отношение суммарной длины дислокаций к единице объема.

Монокристалл=103 поликристалл=105-7 сильно деферм поликрист.=1012-13

Влияние дислокаций на свойства:

При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой. Наличие в материале дислокаций резко повышает скорость диффузии.

7. Поверхностные дефекты кристаллов, их влияние на свойства кристаллов.

Поверхностные дефекты.

К поверхностным дефектам решетки относятся дефекты упаковки и границы зерен.

Дефект упаковки. При движении обычной полной дислокации атомы последовательно становятся из одного равновесного положения в другое, а при движении частичной дислокации атомы переходят в новые положения, нетипичные для данной кристаллической решетки. В результате в материале появляется дефект упаковки. Появление дефектов упаковки связано с движением частичных дислокаций.

В том случае, когда энергия дефекта упаковки велика, расщепление дислокации на частичные энергетически невыгодно, а в том случае, когда энергия дефекта упаковки мала, дислокации расщепляются на частичные, и между ними появляется дефект упаковки. Материалы с низкой энергией дефекта упаковки прочнее материалов с высокой энергией дефекта упаковки.

Границы зёрен представляют собой узкую переходную область между двумя кристаллами неправильной формы. Ширина границ зерен, как правило, составляет 1,5-2 межатомных расстояния. Поскольку на границах зерен атомы смещены из равновесного положения, то энергия границ зерен повышена. Энергия границ зерен существенно зависит от угла разориентации кристаллических решеток соседних зерен. При малых углах разориентации (до 5 град.) энергия границ зерен практически пропорциональна углу разориентировки. При углах разориентировки, превышающих 5 град., плотность дислокаций на границах зерен становится столь высокой, что ядра дислокаций сливаются.

Рис.20. Зависимость энергии границ зерен (Егр) от угла разориентации (). сп1 и сп2 – углы разориентации специальных границ.

При определенных углах разориентации соседних зерен энергия границ зерен резко снижается. Такие границы зерен называются специальными(SSn). Соответственно углы разориентации границ, при которых энергия границ минимальна, называют специальными углами. Измельчение зерен ведет к росту удельного электрического сопротивления металлических материалов и падению удельного электрического сопротивления диэлектриков и полупроводников.