
- •1. Типы металлической связей в твёрдых телах.
- •2.Пространственная кристаллическая решетка
- •3. Основные типы кристаллических решеток Ме. Координационное чило, плотность упаковки, коэффициент компактности.
- •4. Анизотропия кристаллов. Полиморфизм.
- •5. Точечные дефекты кристаллов, их влияние на свойства кристаллов.
- •6. Линейные дефекты кристаллов, их влияние на свойства кристаллов.
- •7. Поверхностные дефекты кристаллов, их влияние на свойства кристаллов.
- •8. Кристаллизация Ме. Физическая природа кристаллизации.
- •9. Механизм и кинетика кристаллизации
- •14. Деформация. Упругая и пласт деформация. Механизм пласт деформации.
- •15. Влияние пластической деформации на структуру, свойства металлов и сплавов.
- •20.Строение сплавов. Тв р-ры (понятие). Тв р-ры замещения с внедрения.
- •21. Строение Ме сплавов. Сплав. Система. Компонент. Фаза.
- •22.Строение сплавов. Промежуточные фазы.
- •23. Особенности кристаллизации сплавов. Правило фаз.
- •27. Фазы и структурные составляющие в системе Fe – c.
- •35. Диффузионный отжиг (через неравновесную кристаллизацию).
- •36. Рекристаллизационный отжиг. Отжиг для снятия напряжения. Рекристаллизационный отжиг
- •37. Отжиг 2-го рода(определение). Превращения, происходящие при нагреве стали
- •39. Диаграмма изотермического превращения переохлажденного аустенита.
- •40. Промежуточное (бейнитное) превращение.
- •43. Закалка с полиморфным превращением. Мартенситное превращение.
- •47. Химико-термическая Обработка. Цианирование.
- •48. Химико-термическая обработка. Азотирование.
- •49. Химико-термическая обработка. Нитроцементация.
- •51. Поры кристаллических решеток.
- •52 Строение реальных кристаллов. Классификация дефектов кристаллических решеток.
- •53. Твердые растворы.Типы твердых растворов.
- •54.Ограниченная и неограниченная растворимость компонентов. Условия раств-ти.
- •55.Зависимость параметров кристаллизации от степени переохлаждения.Кр.Таммана.
- •59. Кривая растяжения металлов.Смысл показателей прочности и пластичности.
- •64. Сиситема Железо–Углерод. Структурные модификации железа. Раств-ть с в Fe.
47. Химико-термическая Обработка. Цианирование.
Химико-термической обработкой называют технологические процессы, приводящие к диффузионному насыщению поверхностного слоя деталей различными элементами. ХТО применяют для повышения твердости, износостойкости, сопротивления усталости, а также для защиты от электрохимической и газовой коррозии. Различают три стадии процесса ХТО. 1 – На первой стадии протекают химические реакции в исходной(окружающей) среде, в результате которых образуются активные диффундирующие элементы, по-вимому, в ионизированном состоянии. 2 – на второй стадии процесса они усваиваются насыщаемой поверхностью металла – происходит адсорбция или хемосорбция диффундирующих элементов, в результате чего тончайший поверхностный слой насыщается диффундирующим элементом (абсорбция), возникает градиент концентрации – движущая сила для следующей стадии процесса. 3 – Третья стадия – диффузионное проникновение элемента в глубь насыщаемого металла, которое сопровождается образованием твердых растворов или фазовой перекристаллизацией.
Цианирование – это процесс насыщения углеродом и азотом в следствии окисления расплавленных цианистых солей. t-ра 820-960, в расплавлен солях содержащих цианистый натрий. Для получения слоя небольшой толщины от 0,15-0,3 мм цианирование производят при t 820-860 в течении 30-90 мин. Поледующ закалку и низкий отпуск проводят сразу после цианирования. Для получения большего слоя от 0,5-2мм, t цианирования составляет 930-960. время выдержки от 1,5-6 часов. При этих T сталь в больших степенях насыщается углеродом до 0,8-2%. После такого режима деталь охлаждается на воздухе а затем под закалку нагревают в соленых ваннах, после чего подвергаются низкому отпуску. Диффузионная металлизация. Целью д м является насыщение поверхностных слоев стали различными элементами с целью повышения коррозионной стойкости, повышения твердости, усталостной прочности. Насыщение производят хромом. Процесс наз-ся хромированием, кремнием – сицилированием, Al – алиторованием, бором – борированием, при борировании резко повышается твердость поверх-х слоев, их износостойкость. Процесс борирования очень капризный, он требует четкого соблюдения технологии.
48. Химико-термическая обработка. Азотирование.
Химико-термической обработкой называют технологические процессы, приводящие к диффузионному насыщению поверхностного слоя деталей различными элементами. ХТО применяют для повышения твердости, износостойкости, сопротивления усталости, а также для защиты от электрохимической и газовой коррозии. Различают три стадии процесса ХТО. 1 – На первой стадии протекают химические реакции в исходной(окружающей) среде, в результате которых образуются активные диффундирующие элементы, по-вимому, в ионизированном состоянии. 2 – на второй стадии процесса они усваиваются насыщаемой поверхностью металла – происходит адсорбция или хемосорбция диффундирующих элементов, в результате чего тончайший поверхностный слой насыщается диффундирующим элементом (абсорбция), возникает градиент концентрации – движущая сила для следующей стадии процесса. 3 – Третья стадия – диффузионное проникновение элемента в глубь насыщаемого металла, которое сопровождается образованием твердых растворов или фазовой перекристаллизацией.
Азотирование – процесс диффузионного насыщения азотом поверхностной зоны деталей. Азотирование применяют для повышения износостойкости и предела выносливости ДМ (коленчатые валы и т.д.) До азотирования детали подвергают закалке, высокому отпуску (улучшению) и чистовой обработке. После азотирования детали шлифуют или полируют. Обычное азотирование проводят при температуре 500-600 гр. С в муфелях или контейнерах, через которые пропускается диссоциирующий аммиак, на остальной поверхности происходит реакция диссоциации аммиака с выделением ионов азота, которые адсорбируются поверхностью детали, а затем диффундируют вглубь. При нагреве аммиака в изолированном объеме возможна лишь реакция с образованием молекулярного азота: 2NH3 =N2 + 3H2,который не может диффундировать в сталь без ионизации. При азотировании углеродистых сталей с увеличением содержания углерода уменьшается скорость диффузии азота и возможно образование карбонитридных фаз. Процесс азотирования – весьма длительная операция. Так, при обычном азотировании стали 38Х2МЮА диффузионную зону толщиной 0,5 мм получают при 500-520 гр. С за 55 часов выдержки. Такую же толщину можно получить за 40 ч, если применить двухступенчатый режим азотирования: 510 гр. С, 15 и 550 гр. С, 25 часов.