
- •1. Типы металлической связей в твёрдых телах.
- •2.Пространственная кристаллическая решетка
- •3. Основные типы кристаллических решеток Ме. Координационное чило, плотность упаковки, коэффициент компактности.
- •4. Анизотропия кристаллов. Полиморфизм.
- •5. Точечные дефекты кристаллов, их влияние на свойства кристаллов.
- •6. Линейные дефекты кристаллов, их влияние на свойства кристаллов.
- •7. Поверхностные дефекты кристаллов, их влияние на свойства кристаллов.
- •8. Кристаллизация Ме. Физическая природа кристаллизации.
- •9. Механизм и кинетика кристаллизации
- •14. Деформация. Упругая и пласт деформация. Механизм пласт деформации.
- •15. Влияние пластической деформации на структуру, свойства металлов и сплавов.
- •20.Строение сплавов. Тв р-ры (понятие). Тв р-ры замещения с внедрения.
- •21. Строение Ме сплавов. Сплав. Система. Компонент. Фаза.
- •22.Строение сплавов. Промежуточные фазы.
- •23. Особенности кристаллизации сплавов. Правило фаз.
- •27. Фазы и структурные составляющие в системе Fe – c.
- •35. Диффузионный отжиг (через неравновесную кристаллизацию).
- •36. Рекристаллизационный отжиг. Отжиг для снятия напряжения. Рекристаллизационный отжиг
- •37. Отжиг 2-го рода(определение). Превращения, происходящие при нагреве стали
- •39. Диаграмма изотермического превращения переохлажденного аустенита.
- •40. Промежуточное (бейнитное) превращение.
- •43. Закалка с полиморфным превращением. Мартенситное превращение.
- •47. Химико-термическая Обработка. Цианирование.
- •48. Химико-термическая обработка. Азотирование.
- •49. Химико-термическая обработка. Нитроцементация.
- •51. Поры кристаллических решеток.
- •52 Строение реальных кристаллов. Классификация дефектов кристаллических решеток.
- •53. Твердые растворы.Типы твердых растворов.
- •54.Ограниченная и неограниченная растворимость компонентов. Условия раств-ти.
- •55.Зависимость параметров кристаллизации от степени переохлаждения.Кр.Таммана.
- •59. Кривая растяжения металлов.Смысл показателей прочности и пластичности.
- •64. Сиситема Железо–Углерод. Структурные модификации железа. Раств-ть с в Fe.
1. Типы металлической связей в твёрдых телах.
Ковалентная связь образуется между атомами одного или нескольких химических элементов с близкими ионизационными потенциалами. В чистом виде ковалентная связь реализуется при взаимодействии элементов с наполовину заполненными электронными оболочками. H2 ,C, Si, Ge, Sn. Соседние атомы обмениваются электронами.
Появление между положительно заряженными ионами пары отрицательно заряженных электронов приводит к тому, что оба иона притягиваются к обобществленным электронам и, тем самым, притягиваются друг к другу. Каждый атом взаимодействует с ограниченным числом соседей, причем число соседей равно числу валентных электронов атома. Следовательно, ковалентная связь насыщенна. Кроме того, атом взаимодействует только с теми соседями, с которыми он обменялся электронами, то есть ковалентная связь направлена.
Ионная связь образуется при взаимодействии атомов с малым количеством валентных электронов и атомов с большим количеством электронов на валентных оболочках. При этом наружные электроны атомов с низкими потенциалами ионизации переходят на валентные оболочки атомов с высокими ионизационными потенциалами. Ионная связь ненасыщенна, поскольку каждый из отрицательно заряженных ионов притягивает к себе положительно заряженные, а каждый из положительно заряженных ионов притягивает к себе все отрицательно заряженные. Однако ионная связь направлена, поскольку ион притягивает к себе разноименно заряженные ионы и отталкивает одноименно заряженные.
Уменьшение размера иона и увеличение его заряда ведет к росту энергии связи, а следовательно, к росту температуру плавления материала, уменьшению коэффициента теплового расширения и к увеличению модуля упругости.
Металлическая связь образуется между атомами одного или нескольких химических элементов, у которых валентные электронные оболочки застроены меньше чем на половину. Поскольку энергия иона минимальна при полностью заполненной внешней оболочке, атомы отдают внешние валентные электроны и превращаются в положительно заряженные ионы, между которыми находятся свободные электроны (электронный газ).
Металлическая связь ненаправленна и ненасыщенна. Кристаллические решетки металлов упакованы плотно.
Связь Ван-дер-Ваальса образуется при сближении молекул или атомов инертных газов.
2.Пространственная кристаллическая решетка
Металлы, описываемые пространственной кристаллической решеткой, под которой понимают наименьший комплекс атомов, при многократной трансляции которых по всем направлениям воспроизводится пространственная кристаллическая решетка.
В узлах кристаллической решетки располагаются атомы.
Пространственную кристаллическую решетку легче всего представить в виде элементарной кристаллической ячейки. Элементарная ячейка кристалла – та минимальная конфигурация атомов, кот. сохраняет свойства кристалла и при трансляции которой можно заполнить сколь угодно большой кристалл.
Для описания элементарной ячейки кристаллической решетки используют 6 величин: три отрезка, равные расстояниям a, b, c (периоды решетки) до ближайших частиц по осям координат, и 3 угла α, β, γ между этими отрезками. Соотношение м/у этими величинами определяется симметрией, согласно которой все кристаллы подразделяются на 7 систем (триклинная, моноклинная, ромбическая, ромбоэдрическая, гексагональная, тетрагональная, кубическая).
На одну элементарную ячейку приходится различное количество атомов; при чем атомы занимают определенные места в ячейке.
В зависимости от расположения атомов в ячейке различают простые, кубические, объемно-центрированные кубические, гранецентрированные кубические, гексагональные решетки.
Координационное число – число ближайших соседей атома.