
- •1 Вопрос
- •Простейшие операции с векторами
- •2 Вопрос
- •Графическое представление равномерного прямолинейного движения
- •1. График скорости (проекции скорости)
- •Графическое представление равноускоренного прямолинейного движения
- •3 Вопрос
- •4 Билет
- •5 Билет
- •6 Билет
- •7 Билет
- •8 Билет
- •9 Билет
- •10 Билет
- •11 Билет
- •12 Билет
- •1Вопрос
- •Закон о суммарном давлении смеси газов
- •Закон о растворимости компонентов газовой смеси
- •3 Вопрос
- •4 Вопрос Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа
- •5 Вопрос Микро- и макропараметры состояния газа
- •6 Вопрос
- •7 Вопрос
- •8 Вопрос
- •9 Вопрос
- •10 Вопрос
- •11 Вопрос
- •12 Вопрос
- •Сущность и формулировки второго закона термодинамики
4 Билет
Поступательное движение — это механическое движение системы точек (тела), при котором любой отрезок прямой, связанный с движущимся телом, форма и размеры которого во время движения не меняются, остается параллельным своему положению в любой предыдущий момент времени
Динамика— раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия.
Силы в природе:
Закон всемирного тяготения. Подобно тому как Луна движется вокруг Земли, Земля в свою очередь обращается вокруг Солнца. Вокруг Солнца обращаются Меркурий, Венера, Марс, Юпитер и другие планеты Солнечной системы. Ньютон доказал, что движение планет вокруг Солнца происходит под действием силы притяжения, направленной к Солнцу и убывающей обратно пропорционально квадрату расстояния от него. Земля притягивает Луну, а Солнце — Землю, Солнце притягивает Юпитер, а Юпитер — свои спутники и т. д. Отсюда Ньютон сделал вывод, что все тела во Вселенной взаимно притягивают друг друга.
Силу взаимного притяжения, действующую между Солнцем, планетами, кометами, звездами и другими телами во Вселенной, Ньютон назвал силой всемирного тяготения.
Сила всемирного тяготения, действующая на Луну со стороны Земли, пропорциональна массе Луны (см. формулу 9.1). Очевидно, что сила всемирного тяготения, действующая со стороны Луны на Землю, пропорциональна массе Земли. Эти силы по третьему закону Ньютона равны между собой. Следовательно, сила всемирного тяготения, действующая между Луной и Землей, пропорциональна массе Земли и массе Луны, т. е. пропорциональна произведению их масс.
Распространив установленные закономерности — зависимость силы тяжести от расстояния и от масс взаимодействующих тел — на взаимодействие всех тел во Вселенной, Ньютон открыл в 1682 г. закон всемирного тяготения: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:
.
(9.3)
Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела.
Закон всемирного тяготения в такой форме может быть использован для вычисления сил взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними. Ньютон доказал, что для однородных шарообразных тел закон всемирного тяготения в данной форме применим при любых расстояниях между телами. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Силы всемирного тяготения называют гравитационными силами, а коэффициент пропорциональности G в законе всемирного тяготения называют гравитационной постоянной.
Вес и невесомость
Вес тела. В технике и быту широко используется понятие веса тела.
Весом тела называют силу, с которой тело вследствие его притяжения к Земле действует на горизонтальную опору или подвес.
Вес
тела
,
т. е. сила, с которой тело действует на
опору, и сила упругости
,
с которой опора действует на тело в
соответствии с третьим законом Ньютона
равны по модулю и противоположны по
направлению:
.
(10.1)
Если
тело находится в покое на горизонтальной
поверхности или равномерно движется и
на него действуют только сила тяжести
и
сила упругости
со
стороны опоры, то из равенства нулю
векторной суммы этих сил следует
равенство
.
(10.2)
Сопоставив выражения (10.1) и (10.2), получим
,
(10.3)
т. е. вес тела на неподвижной или равномерно движущейся горизонтальной опоре равен силе тяжести , но приложены эти силы к разным телам.
При ускоренном движении тела и опоры вес будет отличаться от силы тяжести .
По
второму закону Ньютона при движении
тела массой
под
действием силы тяжести
и
силы упругости
с
ускорением
выполняется
равенство
.
(10.4)
Из уравнений (10.1) и (10.4) для веса получаем
,
(10.5)
или
.
(10.6)
Рассмотрим
случай движения лифта, когда ускорение
направлено
вертикально вниз. Если координатную
ось OY
направить вертикально вниз, то векторы
,
и
оказываются
параллельными оси OY
(рис. 29), а их проекции положительными;
тогда уравнение (10.6) примет вид
.
Так как проекции положительны и параллельны координатной оси, их можно заменить модулями векторов:
.
(10.7)
Вес тела, направление ускорения которого совпадает с направлением ускорения свободного падения, меньше веса покоящегося тела.
Невесомость. Если тело вместе с опорой свободно падает, то a = g, и из формулы (10.7) следует, что P = 0.
Исчезновение веса при движении опоры с ускорением свободного падения называется невесомостью.
Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения модуля скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.
Сила упругости. Закон Гука.
При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.
Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).
|
|
При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:
|
Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называется относительной деформацией, а отношение σ = F / S = –Fупр / S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ:
|
Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·106 Н/м2, т. е. на пять порядков меньше.
Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах.
|
Деформация
изгиба.
|
Упругую
силу N
действующую на тело со стороны опоры
(или подвеса), называют силой реакции
опоры. При соприкосновении тел сила
реакции опоры направлена перпендикулярно
поверхности соприкосновения. Поэтому
ее часто называют силой нормального
давления. Если тело лежит на горизонтальном
неподвижном столе, сила реакции опоры
направлена вертикально вверх и
уравновешивает силу тяжести:
Сила
с
которой тело действует на стол, называется
весом
тела.
В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.
В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала
Сила трения.
Сила трения покоя не может превышать некоторого максимального значения (Fтр)max. Если внешняя сила больше (Fтр)max, возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения. Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел. Однако, во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя. Эта модель силы сухого трения применяется при решении многих простых физических задач
Опыт показывает, что сила трения скольжения пропорциональна силе нормального давления тела на опору, а следовательно, и силе реакции опоры
|
Коэффициент пропорциональности μ называют коэффициентом трения скольжения.
Коэффициент трения μ – величина безразмерная. Обычно коэффициент трения меньше единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей. При скольжении сила трения направлена по касательной к соприкасающимся поверхностям в сторону, противоположную относительной скорости
N–
сила реакции опоры, P=
- N
– вес тела,
При движении твердого тела в жидкости или газе возникает силa вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя.
Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях Fтр ~ υ, при больших скоростях Fтр ~ υ2. При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.
Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.
Законы Ньютона.
Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.
Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.
Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).
В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:
где
—
ускорение
материальной точки;
—
сила,
приложенная к материальной точке;
—
масса
материальной точки.
Или в более известном виде:
Третий
закон Ньютона .Этот
закон объясняет, что происходит с двумя
взаимодействующими телами. Возьмём для
примера замкнутую систему, состоящую
из двух тел. Первое тело может действовать
на второе с некоторой силой
,
а второе — на первое с силой
.
Как соотносятся силы? Третий закон
Ньютона утверждает: сила действия равна
по модулю и противоположна по направлению
силе противодействия. Подчеркнём, что
эти силы приложены к разным телам, а
потому вовсе не компенсируются
Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:
.
Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.