
- •1 Вопрос
- •Простейшие операции с векторами
- •2 Вопрос
- •Графическое представление равномерного прямолинейного движения
- •1. График скорости (проекции скорости)
- •Графическое представление равноускоренного прямолинейного движения
- •3 Вопрос
- •4 Билет
- •5 Билет
- •6 Билет
- •7 Билет
- •8 Билет
- •9 Билет
- •10 Билет
- •11 Билет
- •12 Билет
- •1Вопрос
- •Закон о суммарном давлении смеси газов
- •Закон о растворимости компонентов газовой смеси
- •3 Вопрос
- •4 Вопрос Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа
- •5 Вопрос Микро- и макропараметры состояния газа
- •6 Вопрос
- •7 Вопрос
- •8 Вопрос
- •9 Вопрос
- •10 Вопрос
- •11 Вопрос
- •12 Вопрос
- •Сущность и формулировки второго закона термодинамики
МЕХАНИКА
1 Вопрос
Фи́зика — область естествознания. Наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания.
Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.
Математика в законах природы
Математика нужна всем вне зависимости от рода занятий и профессии. Известно, что еще в древние времена математике придавалось большое значение. Девиз первой академии – платоновской академии – «Не знающие математики сюда не входят» - ярко свидетельствует о том, насколько высоко ценили математику на заре науки, хотя в те времена основным предметом науки была философия. Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания.
Слово «математика» произошло от др.-греч. máthēma, что означает изучение, знание, наука, и др.-греч. mathēmatikós, первоначально означающего восприимчивый, успевающий, позднее относящийся к изучению, математике. В частности, ars mathematica, означает искусство математики. Математика — наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика является языком науки, обеспечивая взаимосвязь различных наук. Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них граничат с математикой. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д.
Геометрический смысл производной
Геометрический смысл производной. Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке
Уравнение касательной к графику функции y=f(x) в точке x0 :
Физический смысл производной.
Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:
Геометрический смысл дифференциала
Проведем
к графику функции
в
точку
касательную
и
рассмотрим ординату этой касательной
для точки
.
На рисунке
,
.
Из прямоугольного треугольника
имеем:
,
т.е.
.
Но, согласно геометрическому смыслу
производной,
.
Поэтому
или
.
Это означает, что дифференциал функции
в
равен
приращению ординаты касательной к
графику функции в этой точке, когда
получает
приращение
.
Приближенные вычисления:
Геометрический и физический смысл определённого интеграла.
Физический смысл: 1) если задана скорость как функция от времени, то путь за время Т равен интегралу от скорости по времени; 2) если задано ускорение как функция от времени, то изменение скорости равно интегралу от ускорения по времени; Геометрический смысл: если функция y(x) больше нуля на промежутке [a;b], то площадь криволинейной трапеции, ограниченной графиком функции, осью ОХ и двумя прямыми х=а и х=b, равна интегралу от этой функции по переменной х на данном промежутке.