
- •1. Методы и средства измерения давления.
- •2. Тахогенераторный преобразователь скорости. Конструкция, принцип действия, параметры и характеристики.
- •3. Измерительные схемы включения фотоэлектрических измерительных преобразователей.
- •4. Методы и средства измерения температуры.
- •Средства измерений температуры
- •5. Фотоимпульсные измерительные преобразователи перемещения.
- •6. Ферромагнитные преобразователи температуры. Принцип действия схемы включения.
- •7. Ультразвуковые расходомеры. Классификация, принцип действия, достоинства и недостатки.
- •8. Терморезистивные измерительные преобразователи. Конструкция, принцип действия, параметры и характеристики, схемы включения.
- •9. Средства ультрузвукового контроля границы раздела «парода-уголь»
- •10. Индуктивные датчики приближения.
- •11 Расходометры переменного перепада давления.
- •14. Термоэлектрические измерительные преобразователи.
- •16. Методы и средства измерения границы раздела «порода-уголь»
- •17.Методы и средства измерения усилий
- •18. Тахогенераторный преобразователь скорости движения
- •19. Цифровые фотоимпульсные преобразователи перемещения.
- •20.Тензорезистивные измерительные преобразователи усилий. Конструкция, принцип действия, параметры и характеристики, схемы включения.
- •Проволочные
- •2) Полупроводниковые
- •21.Методы и средства измерения параметров взрывозащиты
- •22.Емкостные измерительные преобразователи. Конструкция, принцип действия.
- •23.Классификация и конструктивные варианты емкостных измерительных преобразователей.
- •Преобразователь с прямоугольными электродами:
- •П реимущества и недостатки:
- •Преобразователь с переменной диэлектрической проницаемостью:
- •24.Дифференциальные емкостные измерительные преобразователи
- •25 Схемы включения е.П.
- •26. Внутренний и внешний фотоэффект
- •27 Магнитоиндукционный датчик скорости движения. Конструкция, принцип действия.
- •28. Допплеровские ультразвуковые расходомеры
- •31. Характеристики средств измерения в статике и динамике
- •32 Порядок оценки чувствтительности средства измерения
- •33. Порядок расчета операционного измерительного усилителя
- •34. Измерительные приборы квм
- •35. Измерительные приборы квд.
- •Измерительная схема прибора квд1
- •38. Дифференциальный индуктивный измерительный преобразователь. Конструкция, принцип действия, параметры и характеристики, достоинства и недостатки
- •39. Трансформаторные измерительные преобразователи. Конструкция, принцип действия, параметры и характеристики, достоинства и недостатки.
- •40. Дифференциальные трансформаторные измерительные преобразователи. Конструкция, принцип действия, параметры и характеристики, достоинства и недостатки.
- •42. Фотоэлектрические измерительные преобразователи. Конструкция, принцип действия, параметры и характеристики, достоинства и недостатки
- •44. Конструкция, принцип действия, параметры и характеристики термоэлектрических измерительных преобразователей.
- •45. Пьезоэлектрические преобразователи усилий и давлений.
- •47. Измерительные схемы терморезистивных измерительных преобразователей
- •48.Методы и средства измерения моментов.
- •49.Методы и средства измерения угловой скорости и перемещения.
- •Преимущество е.П.: 1.Простая конструкция. 2.Возможность измерения сверхмалых перемещений с высокой чувствительностью.
- •50.Измерительные схемы дифференциальных емкостных измерительных преобразователей.
- •53.Порядок градуировки пирометрических милливольтметров.
- •54. Методы и средства измерения уровня.
- •55.Поплавковые уровнемеры.
- •56.Емкостные уровнемеры.
1. Методы и средства измерения давления.
Давлением называют отношение силы, действующей перпендикулярно поверхности, к площади этой поверхности. Давление — одна из основных величин, определяющих термодинамическое состояние веществ. Давлением во многом определяется ход технологического процесса, состояние технологических аппаратов и режимы их функционирования. С задачей измерения давления приходится сталкиваться при измерениях некоторых технологических параметров, например расхода газа или пара, при изменяющихся термодинамических параметрах, уровня жидкости, и др.
Средства измерений давления классифицируют по виду измеряемого давления и принципу действия. По виду измеряемого давления средства измерений подразделяют на:
манометры избыточного давления — для измерения избыточного давления;
манометры абсолютного давления — для измерения давления, отсчитанного от абсолютного нуля;
барометры — для измерения атмосферного давления;
вакуумметры — для измерения вакуума (разрежения);
мановакуумметры — для измерения избыточного давления и вакуума (разрежения).
Кроме перечисленных средств измерений в практике измерений получили распространение:
напоромеры — манометры малых избыточных давлений (до 40кПа);
тягомеры — вакуумметры с верхним пределом измерения не более-— 40 кПа;
тягонапоромеры— мановакуумметры с диапазоном измерений + 20 ÷ -20 кПа;
вакуумметры остаточного давления — вакуумметры, предназначенные для измерения глубокого вакуума или остаточного давления, т. е. абсолютных давлений менее 200 Па;
дифференциальные манометры — средства измерений разности давлений.
По принципу действия средства измерений давления подразделяют на: жидкостные, поршневые, деформационные (пружинные), ионизационные, тепловые, электрические. Такое подразделение не является исчерпывающим и может быть дополнено средствами измерений, основанными на иных физических явлениях.
В жидкостных приборах с гидростатическим уравновешиванием мерой измеряемого давления является высота столба рабочей жидкости. В качестве рабочей жидкости, называемой затворной или манометрической, применяются дистиллированная вода, ртуть, этиловый спирт, трансформаторное масло. Выбор рода рабочей жидкости . определяется диапазоном измеряемого давления, условиями эксплуатации и требуемой точностью измерений.
В
настоящее время номенклатура жидкостных
средств измерений давления с
гидростатическим уравновешиванием
существенно ограничена. В большинстве
случаев они заменены более совершенными
деформационными средствами измерений.
К числу жидкостных средств измерений
давления (разности давлений и разрежения)
с гидростатическим уравновешиванием,
которые еще применяются на
технологических
потоках, относятся поплавковые и
колокольные дифманометры.
Принцип действия деформационных средств измерений давления основан на использовании упругой деформации чувствительного элемента (ЧЭ) или развиваемой им силы. Мерой измеряемого давления в средствах измерений данного вида является деформация упругого ЧЭ или развиваемая им сила. Различают три основные формы ЧЭ, получивших распространение в практике измерения: трубчатые пружины, сильфоны и мембраны.
Высокая точность, простота конструкции, надежность и низкая стоимость являются основными факторами, обусловливающими широкое распространение деформационных приборов для измерения давления в промышленности и научных исследованиях. Они делятся на: одновитковые с трубчатой пружиной, измерительные приборы с сильфонным чувствительным элементом, измерительные приборы с мембранным чувствительным элементом.
Выпускаемые в настоящее время измерительные преобразователи давления, основанные на методе прямого преобразования, различаются как видом деформационного чувствительного элемента, так и способом преобразования его перемещения или развиваемого им усилия в сигнал измерительной информации. Для преобразования перемещения чувствительного элемента в сигнал измерительной информации широко применяются индуктивные, дифференциально-трансформаторные, емкостные, тензорезисторные и другие преобразовательные элементы. Преобразование усилия, развиваемого чувствительным элементом, в сигнал измерительной информации осуществляется пьезоэлектрическими преобразовательными элементами.
Измерительные
преобразователи давления, основанные
на методе уравновешивающего преобразования
получили широкое применение в
автоматизированных системах управления
технологическими процессами ряда
отраслей промышленности. Они входят в
ГСП и имеют унифицированные пневматические
и электрические токовые выходные
сигналы. Отличительной особенностью
этих
измерительных преобразователей является
блочный принцип построения с использованием
унифицированных преобразователей «сила
— давление» или «сила — ток». Это
позволяет создавать на их базе не только
измерительные преобразователи избыточного
давления, но и разности давлений и
разрежения.