- •Основные понятия теории связи – сообщение, сигнал, канал связи, линия связи и т.Д.
- •4.Понятие о показателях качества систем связи.
- •Детерминированные сигналы и их математические модели
- •8 Геометрическое представление сигнала в пространствах Эвклида и Гильберта.
- •9.Теорема Котельникова как частный случай разложения сигналов в обобщенный ряд Фурье.
- •10. Применение теоремы Котельникова к сигналам с неограниченным спектром.
- •3.Балансная и однополосная модуляции.
- •4.Полярная модуляция.
- •5. Амплитудная модуляция дискретными процессами.
- •6. Спектр.
- •2.2 Сигналы с угловой модуляцией
- •1. Общая запись сигналов с чм и фм.
- •2. Спектр при тональной модуляции.
- •3.Ширина спектра (техническая).
- •5. Узкополосная угловая модуляция.
- •6. Частотная модуляция дискретным процессом.
- •7. Частотная манипуляция.
- •9. Модуляция с минимальным частотным сдвигом.
- •10. Фазовая модуляция и манипуляция дискретным процессом.
- •11. Многократная фазовая модуляция. Относительная фазовая модуляция.
- •2.3 Импульсные модулированные сигналы аим, шим, вим
- •1. Способы формирования, общая запись.
- •Спектры, возможность демодуляции фильтрами нижних частот
- •Икм, способ записи, формирование.
- •4. Шумы квантования.
- •5.Расчет дисперсии ошибки квантования.
- •6. Дельта-модуляция.
- •2.4 Широкополосные сигналы, их использование в связи
- •1. Классификация, основные параметры.
- •Псевдослучайные сигналы. М-последовательности. Получение сигналов. Оптимальный фильтр.
- •3.4 Нелинейное безынерционное преобразование суммы гармонических процессов
- •1. Комбинационные частоты.
- •2.Преобразование частоты.
- •4 Детектирование модулированных сигналов
- •Детектирование сигналов с гармоническими переносчиками
- •1.Детектирование сигналов с ам
- •2. Синхронный детектор.
- •4.Детектор на диоде с линейно-ломаной характеристикой.
- •6. Детектирование сигналов с балансной и однополосной модуляциями.
- •7.Детектирование сигналов с фазовой модуляцией
- •8. Балансный фазовый детектор. Типы фазовых детекторов:
- •10. Детектирование частотно-модулированных сигналов.
- •11. Детектор на расстроенных контурах.
- •Применение фнч для выделения модулирующего процесса.
- •6. Детектирование сигналов с шим.
- •3. Предоставление цифровых сигналов дискретным преобразованием Фурье.
- •4.Быстрое преобразование Фурье. См выше
- •9.. Классификация цифровых фильтров
- •11. Цифровые модуляторы и детекторы.
- •6 Случайные сигналы и их математические модели
- •6.1 Определение случайного процесса, его основные характеристики – закон распределения, моменты, функция корреляции
- •1.Стационарные случайные процессы, их характеристики.
- •Спектральная плотность мощности стационарного процесса, её связь с функцией корреляции.
- •4.Функция корреляции и спектральная плотность мощности узкополосного процесса.
- •7. Функция корреляции и спектральная плотность мощности дискретных случайных процессов.
- •6.2 Преобразования случайных процессов линейными системами
- •1.Временной и частотный методы анализа стационарных линейных систем при случайных воздействиях.
- •Частотный метод анализа точности стационарных линейных систем
- •2.Энтропия совокупности двух сообщений, условная энтропия, их свойства.
- •3. Взаимная информация двух сообщений.
- •4.Производительность источника дискретных сообщений.
- •4.Двумерная энтропия, условная энтропия, их свойства
- •8.4 Пропускная способность дискретного m-ичного канала
- •1.Определение.
- •2. Пропускная способность дискретного двоичного канала.
- •16. Отношение мощностей сигнала и помехи на выходах оптимальных фильтров.
- •10.2 Потенциальная помехоустойчивость приема непрерывных сообщений
- •2. Сравнение видов модуляции по потенциальной помехоустойчивости.
- •2.Принципы уплотнения и разделения каналов.
- •3. Искажения сообщений в многоканальных системах
16. Отношение мощностей сигнала и помехи на выходах оптимальных фильтров.
Оптимальный приемник (рис.6.1) является корреляционным, сигнал на его выходе представляет собой функцию корреляции принимаемого сигнала x(t) и ожидаемого Si(t), благодаря чему обеспечивается максимально - возможное отношение сигнал/шум h20..
Поскольку операция определения функции корреляции является линейной, ее можно реализовать в некотором линейном фильтре, характеристики которого (комплексная передаточная характеристикаK(jw) и импульсная характеристика g(t) являются такими, что отношение сигнал/шум на его выходе получается максимальным, причем h2max = h20.
Найдем характеристики фильтра, когда помеха n(t) является флюктуационной со спектральной плотностью Gn(w) = N0,, w ³ 0.
Пусть сигнал на входе фильтра имеет комплексный спектр S(jw). Тогда сигнал на выходе фильтра y(t)можно определить с помощью преобразования Фурье
Нас
интересуют значение y(t) в момент
принятия решения (момент отсчета t0),
поэтому, заменив t наt0, получим
(9.1)
Чтобы получить максимальную величину y(t0), нужно найти оптимальную характеристику фильтра k(jw). Для этой цели можно воспользоваться известным неравенством Шварца-Буняковского, имеющим вид
Легко проверить, что данное неравенство превращается в равенство при условии,что
где a - любая произвольная постоянная. В нашем случае, применительно к формуле (9.1), величинаy(t0) будет максимальной при условии
(9.2)
(это уже есть условие оптимальности характеристики K(jw), поэтому здесь и в дальнейшем K(jw)заменено на Kopt(jw) ).
Подставляя в левую часть формулы (9.2)
(9.3)
(9.4)
получаем
или, сокращая на S(w), будем иметь
.
(9.5)
Последнюю формулу можно представить в виде двух составляющих, позволяющих найти амплитудно-частотную характеристику оптимального фильтра Kopt(w) и фазо-частотную характеристику jk(w):
;
(9.6)
(9.7)
откуда
(9.8)
Здесь js(w) - фазо-частотный спектр входного сигнала ; wt0 - "запаздывающий" множитель, учитывающий то, что "отсчет" величины сигнала на выходе фильтра производится в момент t0 , когда возникает максимум выходного сигнала фильтра.
Условие (9.6) имеет простой физический смысл: фильтр должен лучше пропускать составляющие спектра сигнала, имеющие большую амплитуду и в меньшей степени пропускать составляющие сигнала, имеющие меньшую амплитуду.
Условие (9.7) имеет также простой физический смысл: в момент отсчета (t0) все частотные составляющие спектра выходного сигнала имеют нулевую фазу, благодаря чему выходное напряжение в момент t0 имеет наибольшее отношение мощности сигнала к мощности помехи .
Условия (9.6) и ( 9.8 ) можно объединить в одно, представив передаточную характеристику в комплексной форме
(9.9)
Можно, наконец, последнюю формулу представить в следующем виде
(9.10)
Здесь S*(jw) - комплексно-сопряженный спектр по отношению к S(jw).
Отношение сигнал/помеха определяется , как обычно, формулой
(9.11)
где
-
мощность сигнала на выходе
фильтра в момент t0 ;
(9.12)
мощность (дисперсия) помехи на выходе фильтра,
Dfopt - эффективная полоса пропускания оптимального фильтра.
Подставляя в (9.11) выражения (9.1) и (9.12) с учетом (9.2), получим
(9.13)
где
энергия сигнала S(t) на
входе фильтра.
Из (9.13) видно, что отношение h2 (t0) численно равно отношению энергии сигнала к спектральной плотности помехи (как в приемнике Котельникова) и не зависит от формы сигнала. А так как энергия сигнала равна произведению мощности сигнала на его длительность, то для повышения помехоустойчивости систем связи с использованием согласованных фильтров можно увеличивать длительность элементарных сигналов, что и делается в широкополосных системах связи.
При применении в демодуляторе приемника согласованных фильтров в сочетании с когерентным способом приема можно добиться потенциальной помехоустойчивости.
