Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
omm_shpory.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
187.9 Кб
Скачать

14) Свойства двойственных оценок.

1.Мера дефицитности продукта или ресурса. Если оценка единицы ресурса итого вида положительна, то при оптимальной производственной программе этот ресурс используется полностью. Если же оценка равна 0,то ресурс используется не полностью.(смотрим по теневой цене-коэфф.показывающий на сколько измен.целевая функц при изменении соотв.ресурса на единицу; если ТЦ не равна 0,ресурс дефицитен).2.Зависимость значений целевой функции от ограничения (по теневой цене),если увеличить значение правой части ограничения на единицу, то значение целевой функции изменяется на теневую цену этого ресурса (ед*тен.цену).3.взаимозаменяемость. определяется отношением теневых цен этих ресурсов(первое на второе, таким кол-вом мы 1 заменим 2).4.рентабельность определяется по нормированной стоимости. Если нормированная стоимсоть не равна 0,то производство не рентабельно, если равно 0,то рентабельно. (затраты ресурсов вошедших в оптимальный план равны запланированному эффекту,а не вошедших оценки затрачиваемых ресурсов превышают намеченный эффект.5.оптимальность плана. Условие оптимальности-когда целевая функция прямой задачи равна целевой функции двойственной задачи(тогда оптим.).6.устойчивоть. устойчивость к изменению параметров правой части задачи )ограниченность ресурсов) и неустойчивость к изменению клэфф.целевой функции. она определяется по стобцам допустимого увеличения и уменьшения(нормир.ст-базис; огранич-не базис).

15) Анализ оптимального решения, выполненного в Excel в программе «Поиск решения».

Процедура Поиск решения представляет собой мощный инструмент для выполнения сложных вычислений. Она позволяет находить значения переменных, удовлетворяющих указанным критериям оптимальности, при условии выполнения заданных ограничений. Наилучшие результаты она позволяет получить для задач выпуклого (в том числе линейного) программирования при условии отсутствия ограничений типа «равно». Поиск решения можно использовать и для решения задач математического программирования других типов, но в этом случае процедура поиска часто заканчивается неудачей, а при благоприятном исходе находит лишь один из локальных оптимумов. Поэтому решение таких задач с помощью данной процедуры следует предварять их аналитическим исследованием на предмет свойств области допустимых решений, чтобы выбрать подходящие начальные значения и сделать правильное заключение о качестве и практической применимости полученного решения. Результаты оптимизации оформляются в виде отчетов трёх типов: • Результаты. Отражаются исходное (до оптимизации) и оптимальное значения целевой функции, значения переменных до и после оптимизации, а также формулы ограничений и дополнительные сведения об ограничениях. • Устойчивость. Содержит сведения о чувствительности решения к малым изменениям в формуле целевой функции или в формулах ограничений. Отчет не создается для моделей, значения переменных в которых ограничены множеством целых чисел. • Пределы (Ограничения). Состоит из верхнего и нижнего значения целевой функции и списка переменных, влияющих на нее, их нижних и верхних границ. Отчет не создается для моделей, значения переменных в которых ограничены множеством целых чисел. Нижней границей является наименьшее значение, которое может принимать переменная (влияющая ячейка) при условии, что значения других переменных (влияющих ячеек) фиксированы и удовлетворяют заданным ограничениям.