Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
genetika_otv_na_voprosy_vse.doc
Скачиваний:
0
Добавлен:
25.12.2019
Размер:
339.46 Кб
Скачать

29. Закон Харди-Вайнберга и факторы динамики популяций.

это закон популяционной генетики — в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны — частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:

Где  — доля гомозигот по одному из аллелей;  — частота этого аллеля;  — доля гомозигот по альтернативному аллелю;  — частота соответствующего аллеля;  — доля гетерозигот.

Процесс наследования не влияет сам по себе на частоту аллелей в популяции, а возможные изменения её генетической структуры возникают вследствие других причин. Закон действует в идеальных популяциях, состоящих из бесконечного числа особей, полностью панмиктических и на которых не действуют факторы отбора.

Факторы динамики поауляций. В ходе эволюции организмов происходит непрерывная замена одних генотипов другими путем изменения в популяции численного соотношения качественно различающихся генотипов, что и составляет сущность динамики генетической структуры популяции. Генетическая изменчивость популяции складывается из мутационной и комбинативной изменчивости. Равновесие генотипов в панмиктической популяции, основанное на сохранении относительных частот генов, изменяется под влиянием ряда постоянно действующих факторов, к которым относятся: мутационный процесс, отбор, численность популяции, изоляция и ряд других факторов.

30. Генетика пола

Пол организма — это совокупность признаков и анатомических структур, обеспечивающих половой путь размножения и передачу наследственной информации.

В определении пола будущей особи ведущую роль играет хромосомный аппарат зиготы — кариотип. Различают хромосомы, одинаковые для обоих полов — аутосомы, и половые хромосомы.

В кариотипе человека содержится 44 аутосомы и 2 половых хромосомы — Х и Y. За развитие женского пола у человека отвечают две Х-хромосомы, т. е. женский пол гомогаметен. Развитие мужского пола определяется наличием Х- и Y-хромосом, т. е. мужской пол гетерогаметен. Сочетание половых хромосом в зиготе определяет пол будущего организма

У всех млекопитающих, человека и мухи-дрозофилы, гомогаметным является женский пол, а гетерогаметным — мужской. У птиц и бабочек, наоборот, гомогаметен мужской пол, а женский — гетерогаметен.

+ Признаки, сцепленные с полом

+ Х-сцепленное наследование

31. Трансляция. Генетический код.

Генетический код имеет следующие особенности:

1. Код - триплетный , т.е. одна аминокислота задается последовательностью из трех нуклеотидов, называемой кодоном .

2. Код не перекрывается , т.е. в последовательности оснований первые три основания кодируют одну аминокислоту, следующие три - другую и т.д.

3. Из таблицы генетического кода видно, что код - вырожденный : 20 аминокислот представлены 61 кодоном. Почти каждой аминокислоте соответствует несколько кодонов-синонимов.

4. Особенностью кода является тенденция к группировке кодонов, соответствующих одной аминокислоте. Часто основание в третьем положении кодона оказывается несущественным для его специфичности. Одна аминокислота может быть представлена четырьмя кодонами, различающимися только по третьему основанию. Иногда различие состоит в предпочтениии пурина пиримидину в этом положении. Меньшую специфичность этого положения в кодоне называют вырожденностью третьего основания.

5. Генетический код - универсален , т.е. все живые организмы (эукариоты, прокариоты и вирусы) используют один и тот же код.

Поскольку генетический код считывается с мРНК , его обычно записывают, используя четыре основания, присутствующие в РНК: U,C,A,G.

Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой.

Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию, в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.

Процесс трансляции разделяют на

инициацию — узнавание рибосомой стартового кодона и начало синтеза.

элонгацию — собственно синтез белка.

терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.