Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Динамика (лекции по ТеорМех).doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
2.32 Mб
Скачать

Условия равновесия механических систем.

Согласно принципу возможных перемещений (основному уравнению статики), для того, чтобы механическая система, на которую наложены идеальные, стационарные, удерживающие и голономные связи, находилась в равновесии, необходимо и достаточно, чтобы в этой системе были равны нулю все обобщенные силы:

(1)

где Qj - обобщенная сила, соответствующая j - ой обобщенной координате;

s - число обобщенных координат в механической системе.

Если для исследуемой системы были составлены дифференциальные уравнения движения в форме уравнений Лагранжа II - го рода, то для определения возможных положений равновесия достаточно приравнять обобщенные силы нулю и решить полученные уравнения относительно обобщенных координат.

Если механическая система находится в равновесии в потенциальном силовом поле, то из уравнений (1) получаем следующие условия равновесия:

(2)

Следовательно, в положении равновесия потенциальная энергия имеет экстремальное значение. Не всякое равновесие, определяемое вышеприведенными формулами, может быть реализовано практически. В зависимости от поведения системы при отклонении от положения равновесия говорят об устойчивости или неустойчивости данного положения.

 

Устойчивость равновесия

Определение понятия устойчивости положения равновесия было дано в конце XIX века в работах русского ученого А. М. Ляпунова. Рассмотрим это определение.

Для упрощения выкладок условимся в дальнейшем обобщенные координаты q1, q2,..., qs отсчитывать от положения равновесия системы:

, где

Положение равновесия называется устойчивым, если для любого сколь угодно малого числа можно найти такое другое число , что в том случае, когда начальные значения обобщенных координат и скоростей не будут превышать :

значения обобщенных координат и скоростей при дальнейшем движении системы не превысят

Иными словами, положение равновесия системы q1 = q2 = ...= qs = 0 называется устойчивым, если всегда можно найти такие достаточно малые начальные значения , при которых движение системы не будет выходить из любой заданной сколь угодно малой окрестности положения равновесия . Для системы с одной степенью свободы устойчивое движение системы можно наглядно изобразить в фазовой плоскости (рис.77). Для устойчивого положения равновесия движение изображающей точки, начинающееся в области , не будет в дальнейшем выходить за пределы области .

Рис.77

 

Положение равновесия называется асимптотически устойчивым, если с течением времени система будет приближаться к положению равновесия, то есть

Определение условий устойчивости положения равновесия представляет собой достаточно сложную задачу, поэтому ограничимся простейшим случаем: исследованием устойчивости равновесия консервативных систем .

Достаточные условия устойчивости положений равновесия для таких систем определяются теоремой Лагранжа - Дирихле: положение равновесия консервативной механической системы устойчиво, если в положении равновесия потенциальная энергия системы имеет изолированный минимум.

Потенциальная энергия механической системы определяется с точностью до постоянной. Выберем эту постоянную так, чтобы в положении равновесия потенциальная энергия равнялась нулю:

.

Тогда для системы с одной степенью свободы достаточным условием существования изолированного минимума, наряду с необходимым условием (2), будет условие

Так как в положении равновесия потенциальная энергия имеет изолированный минимум и , то в некоторой конечной окрестности этого положения

.

Функции, имеющие постоянный знак и равные нулю только при нулевых значениях всех своих аргументов, называются знакоопределенными. Следовательно, для того, чтобы положение равновесия механической системы было устойчивым необходимо и достаточно, чтобы в окрестности этого положения потенциальная энергия была положительно определенной функцией обобщенных координат.

Для линейных систем и для систем, которые можно свести к линейным при малых отклонениях от положения равновесия (линеаризовать), потенциальную энергию можно представить в виде квадратичной формы обобщенных координат

(3)

где - обобщенные коэффициенты жесткости.

Обобщенные коэффициенты являются постоянными числами, которые могут быть определены непосредственно из разложения потенциальной энергии в ряд или по значениям вторых производных от потенциальной энергии по обобщенным координатам в положении равновесия:

(4)

Из формулы (4) следует, что обобщенные коэффициенты жесткости симметричны относительно индексов

.

Для того, чтобы выполнялись достаточные условия устойчивости положения равновесия, потенциальная энергия должна быть положительно определенной квадратичной формой своих обобщенных координат.

В математике существует критерий Сильвестра, дающий необходимые и достаточные условия положительной определенности квадратичных форм: квадратичная форма (3) будет положительно определенной, если определитель, составленный из ее коэффициентов, и все его главные диагональные миноры будут положительными, т.е. если коэффициенты будут удовлетворять условиям

,

,

. . . . .

В частности, для линейной системы с двумя степенями свободы потенциальная энергия и условия критерия Сильвестра будут иметь вид

Аналогичным образом можно провести исследование положений относительного равновесия, если вместо потенциальной энергии ввести в рассмотрение потенциальную энергию приведенной системы.

 

Пример определения положений равновесия и исследования их устойчивости

 

 

Рис.78

 

Рассмотрим механическую систему, состоящую из трубки AB, которая стержнем OO1 соединена с горизонтальной осью вращения, и шарика, который перемещается по трубке без трения и связан с точкой A трубки пружиной (рис.78). Определим положения равновесия системы и оценим их устойчивость при следующих параметрах: длина трубки l2= 1 м, длина стержня l1 =0,5 м. длина недеформированной пружины l0 = 0,6 м , жесткость пружины c = 100 Н/м. Масса трубки m2 = 2 кг , стержня - m1 = 1 кг и шарика - m3 = 0,5 кг. Расстояние OA равно l3 = 0,4 м.

Запишем выражение для потенциальной энергии рассматриваемой системы. Она складывается из потенциальной энергии трех тел, находящихся в однородном поле силы тяжести, и потенциальной энергии деформированной пружины.

Потенциальная энергия тела в поле силы тяжести равна произведению веса тела на высоту его центра тяжести над плоскостью, в которой потенциальная энергия считается равной нулю. Пусть потенциальная энергия равна нулю в плоскости, проходящей через ось вращения стержня OO1 , тогда для сил тяжести

Для силы упругости потенциальная энергия определяется величиной деформации

.

Найдем возможные положения равновесия системы. Значения координат в положениях равновесия есть корни следующей системы уравнений.

(5)

Подобную систему уравнений можно составить для любой механической системы с двумя степенями свободы. В некоторых случаях можно получить точное решение системы. Для системы (5) такого решения не существует, поэтому корни надо искать с помощью численных методов.

Решая систему трансцендентных уравнений (5), получаем два возможных положения равновесия:

Для оценки устойчивости полученных положений равновесия найдем все вторые производные от потенциальной энергии по обобщенным координатам и по ним определим обобщенные коэффициенты жесткости.

Тогда для первого положения равновесия

Воспользуемся критерием Сильвестра

Для второго найденного положения равновесия

Таким образом, первое положение равновесия устойчиво, второе - неустойчиво.

Лекция 10. Исследование колебаний механических систем.

В данной лекции рассматриваются следующие вопросы:

1. Основные определения колебательного движения.

2. Малые свободные колебания системы.

3. Свободные колебания системы с учетом сил сопротивления движению.

4. Вынужденные колебания системы.

5. Влияние сопротивления на вынужденные колебания.

Изучение данных вопросов необходимо для изучения колебательных движений механической системы в дисциплине «Детали машин», для решения задач в дисциплинах «Теория машин и механизмов» и «Сопротивление материалов».

 

Основные определения колебательного движения.

Колебательным движением материальной системы называется такое ее движение, при котором она через некоторые промежутки времени постоянно возвращается к определенному положению.

Нетрудно обнаружить, что большинство окружающих нас систем совершают колебательное движение.

Если время, за которое все точки системы возвращаются к любому определенному положению с равными скоростями, постоянно и одинаково, то такое время Т называется периодом колебаний. А эти колебания – периодическим колебательным движением.

На рис.79 показан пример изменения какой-то обобщенной координаты q при довольно сложном колебательном процессе. А на рис.80 – при более организованных, периодических колебаниях.

Рис.79 Рис.80

При периодическом процессе значения функции, описывающей движение системы, повторяются через каждый период Т, т.е.

(1)

Если эта функция имеет вид

(2)

то такое колебательное движение называется гармоническим. График такого движения дан на рис.81.

Рис.81

 

По (2) – начальная координата, определяющая положение системы в начале движения;

– амплитуда колебаний, имеет размерность обобщенной координаты;

– фаза колебаний, – начальная фаза;

k – частота колебаний, размерность ее с-1.

Период колебаний найдем используя свойство (1):

Отсюда, т.к. период синуса равен , . Значит, период колебаний

(3)

Вообще, существует много всяких типов колебаний. Выделим, в первую очередь, линейные и нелинейные колебания. Названия их определяются видом дифференциальных уравнений, которые описывают колебательное движение материальной системы.

Исследование нелинейных колебаний значительно усложняется, т.к. нет общих методов решения нелинейных дифференциальных уравнений.

Но, если рассматривать малые колебания, такие, при которых координата и скорость изменяются на малую величину, то многие нелинейные уравнения станут линейными и исследование движения значительно упростится.

В дальнейшем мы будем рассматривать лишь малые, линейные колебания. И, мало того, колебания системы только с одной степенью свободы.

Естественно, колебания системы могут совершаться только около устойчивого положения равновесия.

Если система консервативная, то найти положение равновесия и определить устойчивость его можно с помощью потенциальной энергии.

Ранее было установлено, что в положении равновесия выполняется условие и если в положении равновесия то равновесие будет устойчиво.

Договоримся отсчитывать координату от положения равновесия а потенциальную энергию там считать равной нулю Тогда, по определению малых колебаний, обобщенная координата q всегда будет малой величиной.

Разложим потенциальную энергию в ряд Маклорена около положения равновесия:

.

Так как П(0) = 0 и и, отбросив члены третьего и выше порядка малости, получим (4)

где коэффициент по условию устойчивости.

Поэтому потенциальная энергия колебательной системы, отсчитываемая от положения устойчивого равновесия, будет всегда положительной.

Кинетическую энергию системы при малых колебаниях также можно преобразовать.

Кинетическая энергия системы а так как радиус-вектор точек и то

Поэтому где

Эту функцию можно разложить в ряд Маклорена по степеням q около положения равновесия и учесть только первый член: . Остальные члены можно не учитывать, т.к. после подстановки в Т, они станут величинами третьего и выше порядка.

Обозначив постоянную получим

. (5)

Коэффициент a называется коэффициентом инерции. Конечно, т.к. кинетическая энергия не может быть отрицательной.

Замечание. Практически, при исследовании конкретных колебательных систем приходится раскладывать в ряд функции, содержащие, чаще всего, Разложение их с точностью до малых второго порядка известны: