- •Вынужденные колебания материальной точки. Резонанс.
- •Главные оси и главные моменты инерции. Свойства главных осей и главных центральных осей инерции
- •Дифференциальные уравнения движения свободной и несвободной точки в декартовых координатах и в проекциях на оси естественного трехгранника
- •Дифференциальные уравнения поступательного движения и вращения тела вокруг неподвижной оси.
- •Закон сохранения движения центра масс
- •Закон сохранения кинетического момента механической системы. Примеры.
- •Закон сохранения количества движения механической системы.
- •Закон сохранения механической энергии системы при действии на нее потенциальных сил.
- •Законы механики Галилея-Ныютона. Инерциальная система отсчета. Задачи динамики.
- •Механическая система. Масса системы, центр масс и его координаты
- •Кинетическая энергия материальной точки и механической системы. Вычисление кинетической энергии твердого тела в различных случаях его движения.
- •Кинетический момент механической системы относительно центра и оси. Кинетический момент твердого тела, вращающегося относительно оси.
- •Классификация сил, действующих на механическую систему: силы внешние, и внутренние, активные силы и реакции связей.
- •Количество движения материальной точки и механической системы. Выражение количества движения механической системы через массу системы и скорость центра масс.
- •Количество движения точки и механической системы. Элементарный импульс и импульс силы за конечный промежуток времени.
- •Механическая система. Масса системы, центр масс и его координаты.
- •Момент инерции твердого тела относительно оси любого направления. Центробежные моменты инерции.
- •Момент количества движения материальной точки относительно центра и оси.
- •Мощность. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.
- •Осевые моменты инерции однородного стержня, цилиндра, шара
- •Предмет динамики. Основные понятия и определения: масса, материальная точка, сила.
- •Принцип относительности классической механики. Случай относительного покоя.
- •Работа силы на конечном перемещении точки в потенциальном поле. Потенциальная энергия
- •Работа силы упругости и силы тяготения. Работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.
- •Свободные колебания материальной точки. Частота и период колебаний. Амплитуда и начальная фаза
- •Теорема о моментах инерции относительно параллельных осей.
- •Теорема об изменении кинетического момента механической системы по отношению к неподвижному центру и в ее движении по отношению к центру масс.
- •Теорема об изменении кинетической энергии материальной точки и механической системы в дифференциальной и конечной форме.
- •Теорема об изменении момента количества движения точки
- •Центробежные моменты инерции. Главные оси и главные моменты инерции.
- •Элементарная работа силы, ее аналитическое выражение. Работа силы на конечном пути. Работа силы тяжести.
Свободные колебания материальной точки. Частота и период колебаний. Амплитуда и начальная фаза
Свободные колебания материальной точки обуславливаются действием на нее особого вида силы,зависящей от положения восстанавивающей силы
уравнение свободных колебаний имеет вид
Причиной возникновения свободных колебаний является начальное смещение x0 и/или начальная скорость v0.
С
вободные
колебания – происходят под действием
только восстанавливающей силы
Ч
астота
затухающих колебаний
Период
Теорема о моментах инерции относительно параллельных осей.
Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера , момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:
,
где
—
полная масса тела.
Например, момент инерции стержня относительно оси, проходящей через его конец, равен:
Теорема об изменении кинетического момента механической системы по отношению к неподвижному центру и в ее движении по отношению к центру масс.
при любом движении механической системы ее кинетический момент относительно неподвижного центра равен геометрической сумме', момента относительно этого центра главного вектора количества движения системы, условно приложенного в центре масс, и кинетического момента системы в ее относительном движении по отношению к центру масс относительно этого центра.
к
инетические
моменты механической системы относительно
центра масс в абсолютном движении и в
относительном движении по отношению
к центру масс геометрически равны.
Pi X mvlr = Leo где LO — кинетический момент системы относительно центра масс в ее относительном движении по отношению к этому центру.
Теорема об изменении кинетической энергии материальной точки и механической системы в дифференциальной и конечной форме.
Теорема об изменении кинетической энергии материальной точки – Изменение кинетической энергии точки равно работе сил, действующих на точку на том же перемещении :
Т
еорема
об изменении кинетической энергии
системы
– Изменение кинетической энергии
системы равно работе сил, действующих
на систему на соответствующих перемещениях
точек системы:
Теорема об изменении количества движения точки и системы в дифференциальной и конечной формах.
Т
ЕОРЕМА:
Производная по времени от кинетического
момента механической системы относительно
неподвижного центра равен главному
моменту всех внешних сил, действующих
на систему относительно того же центра.
2)З-н сохранения количества движения:
Если геометрическая сумма всех внешних сил, приложенных к механической системе = 0, то её вектор количества движения постоянен. Воспользуемся дифф.формой теоремы об изменении количества движения механической системы.
.б) Если алгебраическая сумма проекций на какую либо ось всех действующих сил системы = 0, то проекция её вектора количества движения на эту ось есть величена постоянная.
