
- •Вынужденные колебания материальной точки. Резонанс.
- •Главные оси и главные моменты инерции. Свойства главных осей и главных центральных осей инерции
- •Дифференциальные уравнения движения свободной и несвободной точки в декартовых координатах и в проекциях на оси естественного трехгранника
- •Дифференциальные уравнения поступательного движения и вращения тела вокруг неподвижной оси.
- •Закон сохранения движения центра масс
- •Закон сохранения кинетического момента механической системы. Примеры.
- •Закон сохранения количества движения механической системы.
- •Закон сохранения механической энергии системы при действии на нее потенциальных сил.
- •Законы механики Галилея-Ныютона. Инерциальная система отсчета. Задачи динамики.
- •Механическая система. Масса системы, центр масс и его координаты
- •Кинетическая энергия материальной точки и механической системы. Вычисление кинетической энергии твердого тела в различных случаях его движения.
- •Кинетический момент механической системы относительно центра и оси. Кинетический момент твердого тела, вращающегося относительно оси.
- •Классификация сил, действующих на механическую систему: силы внешние, и внутренние, активные силы и реакции связей.
- •Количество движения материальной точки и механической системы. Выражение количества движения механической системы через массу системы и скорость центра масс.
- •Количество движения точки и механической системы. Элементарный импульс и импульс силы за конечный промежуток времени.
- •Механическая система. Масса системы, центр масс и его координаты.
- •Момент инерции твердого тела относительно оси любого направления. Центробежные моменты инерции.
- •Момент количества движения материальной точки относительно центра и оси.
- •Мощность. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.
- •Осевые моменты инерции однородного стержня, цилиндра, шара
- •Предмет динамики. Основные понятия и определения: масса, материальная точка, сила.
- •Принцип относительности классической механики. Случай относительного покоя.
- •Работа силы на конечном перемещении точки в потенциальном поле. Потенциальная энергия
- •Работа силы упругости и силы тяготения. Работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.
- •Свободные колебания материальной точки. Частота и период колебаний. Амплитуда и начальная фаза
- •Теорема о моментах инерции относительно параллельных осей.
- •Теорема об изменении кинетического момента механической системы по отношению к неподвижному центру и в ее движении по отношению к центру масс.
- •Теорема об изменении кинетической энергии материальной точки и механической системы в дифференциальной и конечной форме.
- •Теорема об изменении момента количества движения точки
- •Центробежные моменты инерции. Главные оси и главные моменты инерции.
- •Элементарная работа силы, ее аналитическое выражение. Работа силы на конечном пути. Работа силы тяжести.
Принцип относительности классической механики. Случай относительного покоя.
Никакие механические явления, происходящие в среде, не могут обнаружить её прямолинейного и равномерного поступательного движения.В том случае, когда мат точка находится в состоянии относительного покоя, геометрическая сумма приложенных к точке сил и переносной силы инерции равна 0.
Принцип относительности в классической механике
Впервые этот принцип был установлен Галилеем, но окончательную формулировку получил лишь в механике Ньютона. Для его понимания нам потребуется ввести понятие системы отсчета. Как известно, положение движущегося тела в каждый момент времени определяется по отношению к некоторому другому телу, которое называется системой отсчета. С этим телом связана соответствующая система координат, например, привычная нам декартова система. На плоскости движение тела или материальной точки определяется двумя координатами: абсциссой х, показывающей расстояние точки от начала координат по горизонтальной оси, и ординатой у, задающей расстояние точки от начала координат по вертикальной оси. В пространстве к этим координатам добавляется третья координата.
Среди систем отсчета особо выделяют инерциалъные системы, которые находятся друг относительно друга либо в покое, либо в равномерном и прямолинейном движении. Особая роль инерциальных систем заключается в том, что для них выполняется принцип относительности.
Принцип относительности означает, что во всех инерциальных системах все механические процессы происходят одинаковым образом.
В таких системах законы движения тел выражаются той же самой математической формой, или, как принято говорить в науке, они являются ковариантнъши. Действительно, два разных наблюдателя, находящиеся в инерциальных системах, не заметят в них никаких изменений.1
Работа силы на конечном перемещении точки в потенциальном поле. Потенциальная энергия
ТЕОРЕМА. Работа постоянной силы по модулю и направлению силы на результирующем перемещении = алгебраической сумме работ этой силы на составляющих перемещениях.
Работа сил, действующих на точки механической системы в потенциальном поле, равна разности значений силовой функции в конечном и начальном положениях системы и не зависит от формы траектории точек этой системы.
Потенциальная энергия системы в любом данном её положении = сумме работ сил потенциального поля, приложенных к её точкам на перемещении системы из данного положения в нулевое.
Примером потенциального силового поля является гравитационное поле Земли.
Работа силы упругости и силы тяготения. Работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.
Работа силы упругости. Сила упругости - это сила, которая возникает внутри тела в результате деформации и препятствует изменению формы.
Работа силы тяготения.
Работа сил на конечном перемещении равна произведению главного момента внешних сил относительно оси вращения на конечное изменение угла поворота тела.