
- •2. Контактные напряжения и прочность дм.
- •1. Прочность, жёсткость и износостойкость дм.
- •3. Металлические машиностроительные материалы.
- •5. Классификация соединений.
- •7. Расчёт заклёпочных соединений.
- •6. Конструкция заклёпочных соединений.
- •4. Неметаллические машиностроительные материалы.
- •8. Узел фермы. Условия проектирования.
- •9. Конструкция сварных соединений.
- •10. Расчет стыковых сварных соединений, полученных электродуговой сваркой.
- •11. Расчет нахлесточных сварных соединений.
- •12. Расчёт тавровых сварных соединений.
- •13. Конструкция клеевых и паяных соединений.
- •15. Соединения прессовые (с натягом).
- •14. Расчёт клеевых и паяных соединений.
- •16. Расчёт зазоров и натягов в прессовом соединении.
- •17. Расчёт прессовых соединений, нагруженных осевой силой.
- •18. Расчёт прессовых соединений, нагруженных крутящим моментом.
- •19. Расчёт прессовых соединений, нагруженных изгибающим моментом.
- •20. Дополнительные указания к расчёту прессового соединения.
- •21. Конструкции резьбовых соединений. Резьба, геометрические параметры, типы резьб.
- •22. Выбор профиля резьбы.
- •23. Основные типы крепёжных деталей.
- •24. Теория винтовой пары. Условие самоторможения.
- •25. Распределение осевой нагрузки винта по виткам резьбы и способы её выравнивания.
- •27. Расчёт стержня винта, нагруженного внешней растягивающей силой.
- •26. Расчёт резьбы на прочность.
- •28. Расчёт стержня винта, нагруженного только силой затяжки.
- •29. Расчёт болтов, поставленных без зазора.
- •30. Расчёт болтов, поставленных с зазором.
- •31. Расчёт болтов с эксцентрично приложенной нагрузкой.
- •32. Условие герметичности стыков в резьбовых соединениях.
- •33. Конструкции шпоночных соединений.
- •34. Расчёт призматических шпонок.
- •35. Расчёт сегментных шпонок.
- •36. Соединения клиновыми шпонками.
- •37. Соединения тангенциальными шпонками.
- •38. Материал шпонок. Допускаемые напряжения.
- •39. Конструкции зубчатых (шлицевых) соединений.
- •40. Критерии работоспособности и расчёт зубчатых (шлицевых) соединений.
- •44. Силы и силовые зависимости в ременных передачах.
- •43. Основы расчета ременных передач.
- •45. Конструкции клиноременных передач.
- •46. Расчёт ременных передач по допускаемым напряжениям.
- •47. Потери в ременной передаче и кпд.
- •48. Поликлиновые и зубчатоременные передачи.
- •51. Конструкции основных элементов цепной передачи.
- •49. Способы натяжения ремней.
- •52. Звёздочки приводных цепей, материалы звёздочек и цепей.
- •50. Цепные передачи, общие сведения, основные характеристики.
- •54. Критерии работоспособности и расчёта цепных передач.
- •53. Силы в цепной передаче.
- •55. Фрикционные передачи. Общие сведенья, принцип действия, классификация.
- •58. Планетарные передачи, устройство, принцип действия.
- •59. Волновые передачи. Устройство, принцип действия.
- •57. Зубчатые передачи, классификация, материалы.
- •60. Передачи с зацеплением Новикова.
- •56. Основные типы фрикционных передач и вариаторов. Лобовой и торовый вариаторы.
- •1. Прочность, жёсткость и износостойкость дм.
- •2. Контактные напряжения и прочность дм.
- повышением твердости и чистоты трущихся поверхностей;
- обеспечением условий для жидкостного трения, при котором поверхности деталей разделены тонким масляным слоем. Они непосредственно не соприкасаются, а, следовательно, и не изнашиваются, коэффициент трения становится очень малым (0,005);
- соблюдением рационального режима смазки и предохранения поверхностей от загрязнения.
2. Контактные напряжения и прочность дм.
Контактные напряжения образуются в месте соприкосновения двух тел в тех случаях, когда размеры площадки касания малы по сравнению с размерами тел (сжатие двух шаров, шара и плоскости, двух цилиндров и т. п.). Если значение контактных напряжений больше допускаемого, то на поверхности деталей появляются вмятины, борозды, трещины или мелкие раковины. Подобные повреждения наблюдаются у зубчатых, червячных, фракционных и цепных передач, а также в подшипниках качения.
При расчете контактных напряжений различают два характерных случая: первоначальный контакт в точке (два шара, шар и плоскость и т. п.); первоначальный контакт по линии (два цилиндра с параллельными осями, цилиндр и плоскость и т. п.).
На рисунке изображен пример сжатия двух цилиндров с параллельными осями. До приложения удельной нагрузки q цилиндры соприкасались по линии. Под нагрузкой линейный контакт переходит в контакт по узкой площадке. При этом точки максимальных нормальных напряжений σΗ располагаются на продольной оси симметрии контактной площадки. Значение этих напряжений вычисляют по формуле
1. Прочность, жёсткость и износостойкость дм.
Основные критерии работоспособности деталей машин – те требования, без удовлетворения которых деталь не сможет быть надёжной и долговечной.
Основные критерии работоспособности и расчёта деталей машин – прочность, жёсткость, износостойкость и др.
Прочность – важнейший критерий работоспособности детали, характеризует ее способность сопротивляться действию нагрузок без разрушения или пластических деформаций. Непрочные детали не могут работать.
Различают поломки деталей при статическом нагружении и при повторно-переменном нагружении, когда рабочие напряжения достигают соответственно предела прочности σв (предела текучести σт) и пределов выносливости σ-1, τ-1.
Жесткость– изменение размеров и формы детали под нагрузкой. Упругие перемещения деталей не должны превышать допустимых перемещений, устанавливаемых на основании опытов и расчетов. Например, при больших прогибах валов в редукторе резко ухудшается работа зубчатых колес и подшипников. Различают собственную жесткость детали, обусловленную деформациями всего материала детали, и контактную, которая связана с деформациями только поверхностных слоев в местах контакта.
Нормы жесткости деталей устанавливают на основе практики эксплуатации и расчетов. При этом чаще встречаются случаи, когда размеры, полученные из расчета на прочность, оказываются недостаточными по жесткости.
Износостойкость — способность материала оказывать сопротивление стиранию. В результате износа изменяются размеры деталей, увеличиваются зазоры, возникают дополнительные динамические нагрузки. Большой износ может привести даже к поломке детали. Износ деталей снижается с повышением твердости и понижением шероховатости трущихся поверхностей. Для повышения износостойкости деталей применяют смазку, термическую и химико-термическую обработку рабочих поверхностей, для изготовления деталей применяют антифрикционные материалы и т. п.
Повышение износостойкости деталей может быть достигнуто:
- соответствующим выбором материала;