- •1.Информатика и её основные задачи.
- •2. Понятие информации и представление данных в эвм.
- •2.1 Понятие иформации
- •2.2Представление данных в эвм
- •3.Информационные системы и информационные технологии.
- •3.1. Информационные системы
- •Классификация по архитектуре
- •Классификация по степени автоматизации
- •Классификация по характеру обработки данных
- •Классификация по сфере применения
- •Классификация по охвату задач (масштабности)
- •3.2.Информационные технологии
- •4. Принципы построения эвм
- •4.1. Поколения компьютеров
- •Основные виды архитектуры эвм
- •5.Классификация вм.
- •6.Структурная схема персонального компьютера.
- •7.Микропроцессор и интерфейсная система компьютера.
- •7.1. Микропроцессор
- •7.2 Интерфейсная система компьютера
- •8.Запоминающие устройства пк
- •9.Устройство ввода данных Клавиатура и манипуляторы
- •2.6.2. Устройства оптического считывания и сенсорные экраны
- •10. Устройство вывода данных. . Видеосистема компьютера
- •2.7.2. Принтеры и графопостроители
- •11. Структура программного обеспечения
- •12.Общие сведения об операционных системах.
- •13.Операционные системы семейства ms Windows.
- •14.Человеко-машинный интерфейс(на примере ос семейства Windows)
- •15.Фаловая система (основные понятия).
- •Иерархия каталогов
- •Классификация файловых систем
- •Задачи файловой системы
- •16.Прикладные программы офисного назначения.
- •17.Текстовый редактор Word (основные понятие)
- •25. Этапы проектирования задач и их разработка.
- •4. Анализ результатов решения задачи.
- •26. Понятие алгоритма (свойства алгоритма).
- •27.Проектирование алгоритмов и основные их типы.
- •28. Эволюция языков программирования.
- •29.Классификация и обзор языков программирования
- •30. Понятия безопасности информационных систем
- •31. Методы защиты информации.
- •32.Компьютерные вирусы и их классификация.
- •Классификация компьютерных вирусов
- •33.Антивирусные средства.
- •34. Совместное использование эвм
- •35. Виды компьютерных сетей
- •36.Классификация вычислительных сетей.
- •37. Базовые топологии локальных компьютерных сетей
- •38.Сеть Интернет(историческая справка и структура интернет)
- •Структура Internet
- •39. Передача информации в Интернете.
- •40.Основные возможности интернет (сервисы Internet)
4.1. Поколения компьютеров
Появление ЭВМ прежде всего диктовалось потребностями физических и инженерных наук. Успехи этих наук в свою очередь приводили к совершенствованию ЭВМ. Приблизительно каждые 10 лет происходил качественный скачёк в развитии вычислительной техники, поколение сменялось новым поколением.
Признаки, отличающие одно поколение ЭВМ от другого:
элементная база;
быстродействие;
объём оперативной памяти;
устройства ввода/вывода;
программное обеспечение.
Итак, историю вычислительных машин принято рассматривать по поколениям.
Первое поколение ЭВМ (1946-1954) - это время становления архитектуры машин фон-неймановского типа, построенных на электронных лампах с быстродействием около 2-10 тыс. арифметических операций в секунду и объемом ОП до 2 Кбайт. Программные средства были представлены машинным языком конкретной машины и языком «ассемблер».
Второе поколение ЭВМ (1955-1964) - это использование транзистора в качестве переключательного элемента (вместо электронной лампы) с быстродействием 100-150 тыс. операций в секунду и ОП до 32 Кбайт.
Третье поколение ЭВМ (1965-1979) характеризуется тем, что вместо транзисторов стали использоваться интегральные схемы (ИС). Для повышения эффективности использования центрального процессора возникла необходимость в системной программе, управляющей центральным процессором, и в этой связи была создана операционная система (ОС).
Четвертое поколение ЭВМ (1980 - по настоящее время) - это машины, построенные на больших (БИС) и сверхбольших интегральных схемах (СБИС).
Пятое поколение ЭВМ (в настоящее время на рынке еще не появились). В конце 80-х гг. была поставлена задача разработки принципиально новых компьютеров. Отличительными чертами ЭВМ нового поколения являются: новая технология производства, отказ от архитектуры фон Неймана, переход к новым архитектурам (например, на архитектуру потока данных). И, как следствие этого, превращение ЭВМ в многопроцессорную систему с новыми способами ввода-вывода информации, удобными для пользователя (например, распознавание речи и образов); с применением искусственного интеллекта, автоматизации процессов решения задач, получения выводов, манипулирования знаниями. Пока компьютеры этого поколение находится в стадии экспериментальных разработок.
Основные виды архитектуры эвм
1. Классическая архитектура
2. Многопроцессорная архитектура.
3. Многомашинная вычислительная система.
5.Классификация вм.
Многообразие свойств и характеристик порождает различные виды классификации вычислительных машин. Их делят: по этапам развития, по принципу действия, по назначению, по производительности и функциональным возможностям, по условиям эксплуатации, по количеству процессоров и т.д. Четких границ между классами компьютеров не существует. По мере совершенствования структур и технологии производства, появляются новые классы компьютеров (и границы существующих классов существенно изменяются).
1. По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ). АВМ – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (механического воздействия, перемещения, электрического напряжения и др.). ЦВМ – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме. ГВМ – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме (совмещают в себе достоинства АВМ и ЦВМ). Их используют в управлении сложными техническими комплексами.
2. По назначению вычислительные машины делятся на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.
Универсальные вычислительные машины предназначены для решения самых разных задач: экономических, математических, информационных и других, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных.
Характерными чертами универсальных машин являются:
высокая производительность;
разнообразие форм обрабатываемых данных: двоичных, десятичных, символьных, при большом диапазоне их изменения и высокой точности их представления;
обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных;
большая емкость оперативной памяти;
развитая организация системы ввода-вывода информации.
Проблемно-ориентированные вычислительные машины служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам. Они обладают ограниченными по сравнению с универсальными машинами аппаратными и программными ресурсами. К проблемно-ориентированным вычислительным машинам можно отнести, в частности, всевозможные управляющие вычислительные системы (АСУТП, САПР).
Специализированные вычислительные машины используются для решения узкого круга задач или реализации строго определенной группы функций. Такая их узкая ориентация позволяет четко специализировать структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным машинам можно отнести, например, программируемые микропроцессоры специального назначения, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами.
3. По размерам и функциональным возможностям вычислительные машины можно разделить на сверхбольшие (суперЭВМ) – многопроцессорные и (или) многомашинные комплексы, которые используются для решения сложных и больших научных задач - в управлении, разведке, в качестве централизованных хранилищ информации и т.д. Большие (мэйнфреймы) - предназначены для решения широкого класса научно-технических задач. Малые (конструктивно выполненные в одной стойке). Сверхмалые (микроЭВМ).
Заметим, что иногда классификация осуществляется и по иным признакам: например, элементной базе, конструктивному исполнению и др.
Свойства ЭВМ любого типа оценивается с помощью их технико-экономических характеристик, основными из которых являются: операционные ресурсы (характеризуются количеством реализуемых операций, формами представления данных, а также способами адресации), емкость памяти (определяется общим количеством ячеек памяти для хранения информации), быстродействие (определяется числом коротких операций типа сложения, выполняемых за 1 сек), надежность (среднее время работы между двумя отказами), стоимость (это суммарные затраты на приобретение аппаратных и базовых программных средств ЭВМ, а также затраты на эксплуатацию).
