- •Технические средства автоматизации
- •I. Типовые технические средства автоматизации асу тп
- •1.1. Требования к техническому обеспечению асу
- •1.1.2. Исполнения технических средств автоматизации по степени защите от внешних воздействий
- •1.2. Классификация средств автоматизации
- •Исполнительные механизмы;
- •1.3. Этапы развития средств автоматизации
- •1.3.1. Режимы работы двухуровневой системы автоматизации
- •1.4. Классификация технических средств автоматизации по элементной базе
- •2. Особенности систем управления технологическими процессами
- •2.1. Основные принципы построения локальных систем автоматического регулирования
- •2.2. Основные структуры систем автоматизации
- •2.3. Автоматизированные системы управления технологическими процессами
- •2.4. Типовые структуры систем управления
- •3. Электромеханические средства автоматизации
- •3.1. Классификация электрических аппаратов
- •3.1.1. Классификация электрических аппаратов по функциональному признаку
- •3.1.2. Классификация электрических аппаратов по устройству коммутирующего органа
- •3.1.3. Классификация электрических аппаратов по номинальному напряжению
- •3.1.4. Классификация электрических аппаратов низкого напряжения
- •3.2. Общие технические характеристики электрических аппаратов
- •3.3. Физические процессы в электрических аппаратах
- •3.3.1. Нагрев токоведущих частей электрического аппарата
- •3.3.2 Режимы работы электрических аппаратов
- •3.3.3. Эффекты в проводнике вызываемые переменным током
- •3.4. Отключение электрической цепи
- •3.4.1. Общий вид уравнений отключения электрической цепи
- •3.4.2. Процесс отключения постоянного тока
- •3.4.3. Процесс отключения переменного тока.
- •3.5. Электромагниты
- •3.5.1. Основные положения теории магнитных цепей
- •3.5.2. Тяговые силы в электромагнитах
- •3.5.3. Особенности электромагнитов переменного тока
- •3.5.4. Изменение скорости срабатывания электромагнитов постоянного тока
- •3.6. Электромеханические реле автоматики
- •3.6.1. Классификация реле по выполняемой функции
- •3.6.2. Классификация реле по техническим параметрам
- •3.6.3. Электромагнитные реле.
- •3.6.4. Герметичный магнитоуправляемый контакт
- •3.6.5. Поляризованные реле
- •3.6.6. Реле времени с электромагнитным замедлением
- •3.6.7. Тепловые реле
- •3.6.8. Бесконтактное промежуточное реле
- •3.6.9. Твердотельное реле
- •3.6.10. Схемы гашения искры на контактах реле
- •3.7. Аппараты управления
- •3.7.1. Дугогасительные устройства аппаратов управления
- •3.7.2. Контакторы и пускатели
- •3.7.2. Автоматический воздушный выключатель
- •3.7.2.1 Примеры автоматических выключателей
- •3.7.3. Устройство защитного отключения
- •3.7.3.1 Классификация типов узо по условиям функционирования
- •3.7.3.2 Классификация узо по способу технической реализации
- •3.7.6. Командоаппараты и неавтоматические выключатели
- •3.8. Бесконтактные аппараты
- •3.8.1. Особенности бесконтактных аппаратов
- •3.8.2 Выключатели тиристорные
- •4. Исполнительные устройства
- •4.1. Общие характеристики исполнительных устройств
- •4.2. Регулирующие органы
- •4.2.1. Технические характеристики дроссельных регулирующих органов
- •4.2.2. Требования к регулирующим органам
- •4.2.3. Краткая характеристика дроссельных регулирующих органов
- •4.2.3.1. Шиберы
- •4.2.3.2. Поворотные заслонки
- •4.2.3.3. Регулирующие клапаны
- •4.2.3.4. Диафрагмовые и шланговые регулирующие органы
- •4.2.3.5 Краны
- •4.3. Исполнительные механизмы
- •4.3.1. Механизм исполнительный электрический однооборотный
- •4.3.2. Механизм исполнительный электрический многооборотный мэм
- •4.3.3. Механизмы исполнительные электрические прямоходные мэп
- •4.4. Блоки управления электродвигателем реверсивные
- •4.4.1. Обмен информацией по каналу полевой сети
- •5. Промышленные сети
- •3. Промышленные сети
- •3.1. Структура промышленных сетей
- •3.1.1. Топология промышленных сетей
- •3.2. Аппаратные интерфейсы пк
- •3.2.1. Стандарт rs-232c
- •3.2.2. Последовательная шина usb
- •3.3. Универсальный асинхронный приемопередатчик
- •3.4. Физические интерфейсы
- •3.4.1. Интерфейс rs-485
- •3.4.1.1. Автоматический преобразователь интерфейсов usb/rs-485 овен ас4
- •3.4.2. Интерфейс «Токовая петля»
- •3.4.2.1. Адаптер интерфейса овен ас 2
- •3.5. Протоколы промышленных сетей
- •3.5.1. Протокол modbus
- •3.5.2. Hart-протокол
- •3.5.4. Сеть profibus
- •3.5.5. Описание шины can
- •2.8.1.1. Организация сети can
- •2.8.1.2. Физический уровень канала can.
- •2.8.1.3. Арбитраж шины can.
- •2.8.1.4. Структура формата передачи данных.
- •2.8.1.1. Форматы кадра
- •Механизм обработки ошибок.
- •Адресация и протоколы высокого уровня
- •5.8. Универсальная сеть Foundation Fieldbus
- •5.9. Физическая среда передачи данных
- •6. Языки программирования логических контроллеров
- •3. Языки программирования логических контроллеров
- •3.1 Объекты адресации языков программирования плк
- •3.2 Язык Ladder Diagram (ld)
- •3.3 Язык Functional Block Diagrams (fbd)
- •3.4 Язык Instruction List (il)
- •3.5. Язык структурированного текста
- •3.5.1. Применение управляющих структур Условное действие if...End_if
- •Условное итеративное действие while...End_while
- •Условное итеративное действие repeat...End_repeat
- •Повторяющееся действие for...End_for
- •Выход из цикла посредством инструкции exit
- •3.6. Язык последовательных функциональных схем
- •5.4. Пример
- •7. Микропроцессорные реле автоматики
- •5. Мини-контроллеры
- •5.1. Мини-контроллеры серии Alpha
- •5.2. Миниатюрные программируемые устройства Easy
- •5.2.1. Управляющее реле Easy 500
- •5.2.2. Управляющее реле Easy 700
- •5.2.3. Управляющее реле Easy 800
- •5.2.4. Модули расширения Easy
- •5.2.5. Средства коммуникации устройств Easy
- •5.3. Интеллектуальные реле Zelio Logic
- •5.3.1. Компактные и модульные интеллектуальные реле
- •5.3.2. Общие технические характеристики реле Zelio Logic
- •5.3.3. Преобразователи Zelio Analog
- •5.3.4. Средства коммуникации интеллектуальных реле Zelio Logic
- •5.3.4.1. Коммуникационный модемный интерфейс
- •5.3.4.2. Протокол связи Modbus slave
- •5.3.4.3. Протокол связи Ethernet server
- •5.3.5. Программное обеспечение интеллектуального реле
- •5.4. Универсальный логический модуль Logo!
- •5.4.1. Типы базовых модулей logo! Basic
- •5.4.2. Модули расширения ввода/вывода сигналов Logo!
- •5.4.3. Коммуникационные модули logo!
- •5.4.4.1.3. Цифровые выходы
- •5.4.4.1.4. Аналоговые выходы
- •5.4.4.1.5. Блоки флагов
- •5.4.4.1.6. Биты регистра сдвига
- •5.4.4.1.7. Клавиши управления курсором
- •5.4.4.1.8. Постоянные уровни
- •5.4.4.2. Группа базовых функций
- •5.4.4.3. Специальные функции
- •5.4.4.3.1. Список специальных функций
- •5.4.4.3.2. Примеры специальных функций
- •5.4.5. Объем памяти и размер коммутационной программы
- •8 Программируемые логические контроллеры
- •6.1. Программируемые контроллеры simatic s7-22x
- •6.1.1. М одули расширения вводов-выводов
- •6.1.2. К оммуникационные модули
- •6.1.3. Ч еловеко-машинный интерфейс
- •6.2. Программируемый логический контроллер simatic s7-224xp
- •6.2.1. Основы функционирования плк
- •6.2.1.1. Порядок чтения входов
- •6.2.1.2. Исполнение программы
- •6.2.1.3. Запись значений в выходы
- •6.2.2. Доступ к данным s7-200
- •6.2.3. Адресация встроенных входов/выходов и входов/выходов модулей расширения
- •6.2.4. Обмен данными в сети
- •6.3. Программируемые контроллеры simatic s7-300
- •6.3.1. Области применения
- •6.3.2. Состав
- •6.3.3. Сертификаты
- •6.4. Программируемые контроллеры simatic s7-400
- •6.4.1. Области применения
- •6.4.2. Состав
- •6.4.3. Сертификаты
- •Список литературы
3.3. Универсальный асинхронный приемопередатчик
Для осуществления приема и передачи данных в асинхронном последовательном формате используется универсальный асинхронный приемопередатчик (Universal Asynchronous Receiver and Transmitter – UART), который является основой последовательного интерфейса.
Отличительными особенностями его работы являются:
наличие программно управляемого тактового генератора, специализированного только для обслуживания UART, обеспечивающего большой набор тактовых частот и возможность передачи данных на высоких частотах даже при низкой системной тактовой частоте;
способность работы в дуплексном режиме;
возможность передавать как 8-и, так и 9-битные данные;
фильтрация помех на входе путем многократного опроса каждого бита;
аппаратная фиксация ошибок переполнения и кадрирования (ложный стоп-бит) при приеме данных;
формирование трех различных прерываний с индивидуальными адресами векторов прерывания: при завершении передачи (Tx Complete), при завершении приема (Rx Complete) и при освобождении регистра данных передатчика (Tx Data Register Empty).
Формат последовательной передачи позволяет после 8 бит данных передавать один служебный бит, который, например, может быть битом четности или дополнительным стоп-битом. Формат кадра определяет число стоп-битов (1 или 2), число бит данных (8 или 9), а также назначение девятого бита данных. Все это зависит от типа контроллера.
По умолчанию передатчик устанавливает на линии единичный уровень (MARK), который может длиться сколь угодно долго.
Пример кадра посылки приведен на рис. 3.13.
Рис. 3.13. Последовательный формат передачи данных
Универсальный асинхронный приемопередатчик состоит из приемника (Receiver) и передатчика (Transmitter). Кроме того, в состав UART входят: тактовый генератор связи (бодрейт-генератор), управляющие регистры, статусные регистры, буферные и сдвиговые регистры приемника и передатчика.
Генератор задает тактовую частоту приемопередатчика для требуемой скорости связи. Управляющие регистры задают режим работы последовательного порта и его прерываний. В статусном регистре устанавливаются флаги по различным событиям.
Передача в последовательный канал инициируется записью байта в буферный регистр данных передатчика. Все остальные операции по преобразованию данных из параллельной формы в последовательную и формированию кадра передачи байта осуществляет передатчик UART. Он переписывает данные из буферного регистра в регистр сдвига передатчика, где к ним автоматически добавляются старт-бит и стоп-бит. Структурная схема передатчика показана на рис. 3.14.
Рис. 3.14. Структурная схема передатчика
Передача начинается посылкой бита с нулевым уровнем (старт-бита), затем идут биты данных младшим битом вперед (низкий уровень – «0», высокий уровень – «1»), завершается посылка передачей одного или двух битов с единичным уровнем (стоп-битов).
Приемник UART выполняет операции по преобразованию входных данных из последовательной формы в параллельную. Он производит предварительную выборку сигнала на входе RxD с частотой, в 16 раз большей скорости обмена рис. 3.15.
Когда линия последовательной передачи свободна (данные не передаются), она находится в состоянии логической «1». Выборка приемником логического «0» после того, как линия была свободна, интерпретируется как фронт старт-бита и инициирует последовательность определения старт-бита. Приемник, считая от первой нулевой выборки, анализирует 8-ю, 9-ю и 10-ю выборки. При обнаружении двух или более логических «1» в этих трех выборках старт-бит воспринимается как импульсная помеха, и приемник начинает следить за следующим перепадом «1/0».
Если старт-бит фиксируется, то затем осуществляется распознавание бит данных, причем для каждого бита также анализируются три значения входного сигнала в выборках 8, 9 и 10, считая от начала бита. За истинное значение бита принимается логическое значение, которое появилось хотя бы в двух выборках. Такие значения, полученные в результате голосования, последовательно посылаются в регистр сдвига приемника.
Рис. 3.15. Структурная схема приемника
При поступлении стоп-бита результатом голосования трех выборок должна быть логическая «1». Если обнаружены хотя бы два логических «0», устанавливается флаг ошибки кадрирования FE (Framing Error) в регистре USR. Независимо от того, выявлен или нет стоп-бит в конце цикла приема байта, данные посылаются в регистр данных приемника UDR (UART Data Register) и устанавливается флаг завершения приема RXC (Receive Complete) в статусном регистре USR.
Перед началом связи между двумя устройствами необходимо настроить их приемопередатчики на одинаковую скорость связи и формат кадра.
Скорость связи или бодрейт (baud rate) измеряется в числе передаваемых бит в секунду, включая старт и стоп-биты. Задается эта скорость в бодрейт-генераторе делением системной частоты на задаваемый коэффициент. Типичный диапазон скоростей: 2400÷115200 бод.
Приемник и передатчик тактируются, как правило, с 16-кратной частотой относительно бодрейта. Это нужно для сэмплирования сигнала. Приемник, поймав падающий фронт старт-бита, отсчитывает несколько тактов и следующие три такта считывает (семплирует) порт Rx. Это как раз середина старт-бита. Если большинство значений семплов – «0», старт-бит считается состоявшимся, иначе приемник принимает его за шум и ждет следующего падающего фронта. После удачного определения старт-бита, приемник точно также семплирует серединки битов данных и по большинству семплов считает бит «0» или «1», записывая их в сдвиговый регистр. Стоп-биты тоже семплируются, и если уровень стоп-бита не «1» – UART определяет ошибку кадра и устанавливает соответствующий флаг в управляющем регистре (рис. 3.16).
Рис. 3.16. Пример чтения кадра
UART является полнодуплексным интерфейсом, поэтому приемник и передатчик могут работать одновременно и независимо друг от друга.
