
- •Технические средства автоматизации
- •I. Типовые технические средства автоматизации асу тп
- •1.1. Требования к техническому обеспечению асу
- •1.1.2. Исполнения технических средств автоматизации по степени защите от внешних воздействий
- •1.2. Классификация средств автоматизации
- •Исполнительные механизмы;
- •1.3. Этапы развития средств автоматизации
- •1.3.1. Режимы работы двухуровневой системы автоматизации
- •1.4. Классификация технических средств автоматизации по элементной базе
- •2. Особенности систем управления технологическими процессами
- •2.1. Основные принципы построения локальных систем автоматического регулирования
- •2.2. Основные структуры систем автоматизации
- •2.3. Автоматизированные системы управления технологическими процессами
- •2.4. Типовые структуры систем управления
- •3. Электромеханические средства автоматизации
- •3.1. Классификация электрических аппаратов
- •3.1.1. Классификация электрических аппаратов по функциональному признаку
- •3.1.2. Классификация электрических аппаратов по устройству коммутирующего органа
- •3.1.3. Классификация электрических аппаратов по номинальному напряжению
- •3.1.4. Классификация электрических аппаратов низкого напряжения
- •3.2. Общие технические характеристики электрических аппаратов
- •3.3. Физические процессы в электрических аппаратах
- •3.3.1. Нагрев токоведущих частей электрического аппарата
- •3.3.2 Режимы работы электрических аппаратов
- •3.3.3. Эффекты в проводнике вызываемые переменным током
- •3.4. Отключение электрической цепи
- •3.4.1. Общий вид уравнений отключения электрической цепи
- •3.4.2. Процесс отключения постоянного тока
- •3.4.3. Процесс отключения переменного тока.
- •3.5. Электромагниты
- •3.5.1. Основные положения теории магнитных цепей
- •3.5.2. Тяговые силы в электромагнитах
- •3.5.3. Особенности электромагнитов переменного тока
- •3.5.4. Изменение скорости срабатывания электромагнитов постоянного тока
- •3.6. Электромеханические реле автоматики
- •3.6.1. Классификация реле по выполняемой функции
- •3.6.2. Классификация реле по техническим параметрам
- •3.6.3. Электромагнитные реле.
- •3.6.4. Герметичный магнитоуправляемый контакт
- •3.6.5. Поляризованные реле
- •3.6.6. Реле времени с электромагнитным замедлением
- •3.6.7. Тепловые реле
- •3.6.8. Бесконтактное промежуточное реле
- •3.6.9. Твердотельное реле
- •3.6.10. Схемы гашения искры на контактах реле
- •3.7. Аппараты управления
- •3.7.1. Дугогасительные устройства аппаратов управления
- •3.7.2. Контакторы и пускатели
- •3.7.2. Автоматический воздушный выключатель
- •3.7.2.1 Примеры автоматических выключателей
- •3.7.3. Устройство защитного отключения
- •3.7.3.1 Классификация типов узо по условиям функционирования
- •3.7.3.2 Классификация узо по способу технической реализации
- •3.7.6. Командоаппараты и неавтоматические выключатели
- •3.8. Бесконтактные аппараты
- •3.8.1. Особенности бесконтактных аппаратов
- •3.8.2 Выключатели тиристорные
- •4. Исполнительные устройства
- •4.1. Общие характеристики исполнительных устройств
- •4.2. Регулирующие органы
- •4.2.1. Технические характеристики дроссельных регулирующих органов
- •4.2.2. Требования к регулирующим органам
- •4.2.3. Краткая характеристика дроссельных регулирующих органов
- •4.2.3.1. Шиберы
- •4.2.3.2. Поворотные заслонки
- •4.2.3.3. Регулирующие клапаны
- •4.2.3.4. Диафрагмовые и шланговые регулирующие органы
- •4.2.3.5 Краны
- •4.3. Исполнительные механизмы
- •4.3.1. Механизм исполнительный электрический однооборотный
- •4.3.2. Механизм исполнительный электрический многооборотный мэм
- •4.3.3. Механизмы исполнительные электрические прямоходные мэп
- •4.4. Блоки управления электродвигателем реверсивные
- •4.4.1. Обмен информацией по каналу полевой сети
- •5. Промышленные сети
- •3. Промышленные сети
- •3.1. Структура промышленных сетей
- •3.1.1. Топология промышленных сетей
- •3.2. Аппаратные интерфейсы пк
- •3.2.1. Стандарт rs-232c
- •3.2.2. Последовательная шина usb
- •3.3. Универсальный асинхронный приемопередатчик
- •3.4. Физические интерфейсы
- •3.4.1. Интерфейс rs-485
- •3.4.1.1. Автоматический преобразователь интерфейсов usb/rs-485 овен ас4
- •3.4.2. Интерфейс «Токовая петля»
- •3.4.2.1. Адаптер интерфейса овен ас 2
- •3.5. Протоколы промышленных сетей
- •3.5.1. Протокол modbus
- •3.5.2. Hart-протокол
- •3.5.4. Сеть profibus
- •3.5.5. Описание шины can
- •2.8.1.1. Организация сети can
- •2.8.1.2. Физический уровень канала can.
- •2.8.1.3. Арбитраж шины can.
- •2.8.1.4. Структура формата передачи данных.
- •2.8.1.1. Форматы кадра
- •Механизм обработки ошибок.
- •Адресация и протоколы высокого уровня
- •5.8. Универсальная сеть Foundation Fieldbus
- •5.9. Физическая среда передачи данных
- •6. Языки программирования логических контроллеров
- •3. Языки программирования логических контроллеров
- •3.1 Объекты адресации языков программирования плк
- •3.2 Язык Ladder Diagram (ld)
- •3.3 Язык Functional Block Diagrams (fbd)
- •3.4 Язык Instruction List (il)
- •3.5. Язык структурированного текста
- •3.5.1. Применение управляющих структур Условное действие if...End_if
- •Условное итеративное действие while...End_while
- •Условное итеративное действие repeat...End_repeat
- •Повторяющееся действие for...End_for
- •Выход из цикла посредством инструкции exit
- •3.6. Язык последовательных функциональных схем
- •5.4. Пример
- •7. Микропроцессорные реле автоматики
- •5. Мини-контроллеры
- •5.1. Мини-контроллеры серии Alpha
- •5.2. Миниатюрные программируемые устройства Easy
- •5.2.1. Управляющее реле Easy 500
- •5.2.2. Управляющее реле Easy 700
- •5.2.3. Управляющее реле Easy 800
- •5.2.4. Модули расширения Easy
- •5.2.5. Средства коммуникации устройств Easy
- •5.3. Интеллектуальные реле Zelio Logic
- •5.3.1. Компактные и модульные интеллектуальные реле
- •5.3.2. Общие технические характеристики реле Zelio Logic
- •5.3.3. Преобразователи Zelio Analog
- •5.3.4. Средства коммуникации интеллектуальных реле Zelio Logic
- •5.3.4.1. Коммуникационный модемный интерфейс
- •5.3.4.2. Протокол связи Modbus slave
- •5.3.4.3. Протокол связи Ethernet server
- •5.3.5. Программное обеспечение интеллектуального реле
- •5.4. Универсальный логический модуль Logo!
- •5.4.1. Типы базовых модулей logo! Basic
- •5.4.2. Модули расширения ввода/вывода сигналов Logo!
- •5.4.3. Коммуникационные модули logo!
- •5.4.4.1.3. Цифровые выходы
- •5.4.4.1.4. Аналоговые выходы
- •5.4.4.1.5. Блоки флагов
- •5.4.4.1.6. Биты регистра сдвига
- •5.4.4.1.7. Клавиши управления курсором
- •5.4.4.1.8. Постоянные уровни
- •5.4.4.2. Группа базовых функций
- •5.4.4.3. Специальные функции
- •5.4.4.3.1. Список специальных функций
- •5.4.4.3.2. Примеры специальных функций
- •5.4.5. Объем памяти и размер коммутационной программы
- •8 Программируемые логические контроллеры
- •6.1. Программируемые контроллеры simatic s7-22x
- •6.1.1. М одули расширения вводов-выводов
- •6.1.2. К оммуникационные модули
- •6.1.3. Ч еловеко-машинный интерфейс
- •6.2. Программируемый логический контроллер simatic s7-224xp
- •6.2.1. Основы функционирования плк
- •6.2.1.1. Порядок чтения входов
- •6.2.1.2. Исполнение программы
- •6.2.1.3. Запись значений в выходы
- •6.2.2. Доступ к данным s7-200
- •6.2.3. Адресация встроенных входов/выходов и входов/выходов модулей расширения
- •6.2.4. Обмен данными в сети
- •6.3. Программируемые контроллеры simatic s7-300
- •6.3.1. Области применения
- •6.3.2. Состав
- •6.3.3. Сертификаты
- •6.4. Программируемые контроллеры simatic s7-400
- •6.4.1. Области применения
- •6.4.2. Состав
- •6.4.3. Сертификаты
- •Список литературы
4.4.1. Обмен информацией по каналу полевой сети
Блоки могут принимать и передавать информацию (команды управления, значения дискретных и аналоговых сигналов, информацию о срабатывании защит) по 2-м каналам с интерфейсом RS-485. Блоки являются ведомым (Slave) устройством полевой сети и поддерживают протоколы обмена сетей Modbus RTU и МАГИСТР.
Значение скорости обмена в канале при настройке выбирается из ряда: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800 бод.
При работе блоков на канале полевой сети с протоколом Modbus RTU формат передаваемого байта: старт-бит, 8 бит данных, 1 или 2 стоп-бита.
Обмен информацией осуществляется при помощи команд чтения и записи регистров.
5. Промышленные сети
3. Промышленные сети
Промышленная сеть – среда передачи данных. Включает набор стандартных протоколов обмена данными и физический интерфейс связи, что позволяет связать воедино технологическое оборудование и обеспечить взаимодействие нижнего и верхнего уровней системы управления.
Различают следующие типы сетей:
локальные сети (LAN – Local Area Networks) – расположены на ограниченной территории;
городские сети (MAN – Metropolitan Area Networks) – предназначены для обслуживания территории крупных городов. Эти сети связывают локальные сети в масштабах города и обеспечивают их выход в глобальные сети;
глобальные сети (WAN – Wide Area Networks) – объединяют территориально удаленных пользователей на большой территории.
Промышленные сети можно отнести к типу LAN, но им присущи существенные отличия от LAN-сети, применяемой в офисных приложениях, поскольку Fieldbus - это сеть для промышленного применения.
Коммуникационная технология построения единой информационной сети, объединяющей интеллектуальные контроллеры, датчики и исполнительные механизмы, определяется одним термином fieldbus (полевая шина, или промышленная сеть).
Fieldbus – это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
Fieldbus – это, во-первых, некий физический способ объединения устройств и, во-вторых, программно-логический протокол их взаимодействия, которые применимы для тяжелых промышленных условий.
Промышленные сети применяются на уровне устройств, обслуживающих реальный процесс производства и переработки материалов. Выход в системы представления (визуализации) данных, коммерческие и административные системы организуется, как правило, через стандартные офисные сети типа Ethernet через протокол TCP/IP.
К сети предъявляется множество разнообразных, зачастую противоречивых, требований. Некоторые основные требования, предъявляемые к «идеальной» промышленной сети приведены ниже:
производительность;
предсказуемость времени доставки информации, т.е. жесткая детерминированность поведения;
помехоустойчивость, например, при больших электромагнитных помехах;
доступность и простота организации физического канала передачи данных;
работа на длинных линиях с использованием недорогих физических сред (например, витая пара);
максимальный сервис для приложений верхнего уровня;
минимальная стоимость устройств аппаратной реализации;
возможность получения «распределенного интеллекта»;
управляемость и самовосстановление в случае возникновения нештатных ситуаций;
повышенная надежность физического и канального уровней передачи данных при работе в промышленной среде;
наличие специальных высоконадежных механических соединительных компонентов;
обеспечение функций реального времени.
Основное здесь – детерминированность поведения, предполагающая, что все возможные события в сети могут быть заранее четко определены, и повышенная надежность передачи данных.
Как видно, в получившемся списке одни требования могут противоречить другим. Подобные противоречия приходится обходить постоянно и на всех уровнях проектирования, начиная с того, какой формат пакета передачи данных выбрать: тот, который позволит осуществлять расширенное управление сетью и удаленную загрузку, или тот, который обеспечит максимально быструю работу с большим числом дискретных сигналов.
Предпочтительность того или иного сетевого решения как средства транспортировки данных можно оценить по следующей группе критериев:
объем передаваемых полезных данных;
время передачи фиксированного объема данных;
удовлетворение требованиям задач реального времени;
максимальная длина шины;
допустимое число узлов на шине;
помехозащищенность;
денежные затраты в расчете на узел.
При выборе протокольного решения необходимо следовать принципу разумной достаточности, т.к. улучшение одного параметра часто приводит к снижению качества другого.
Системы, работающие по уникальным протоколам связи, получили название «закрытых систем». Уникальные системы производятся и поддерживаются одной компанией. Большинство таких систем зародилось в те времена, когда проблемы интеграции изделий от разных производителей не считались актуальными.
Успешно интегрировать в единую систему изделия от различных производителей, позволяет использование принципов открытых систем.
Открытые промышленные сети – сети, на которые распространяются международные стандарты промышленных сетей.
Сеть считается открытой, если она удовлетворяет следующим критериям:
наличием полных опубликованных спецификаций;
наличием доступных компонентов от ряда независимых поставщиков;
организацией хорошо определенного процесса ратификации возможных дополнений к стандартам и спецификациям.
То есть, каждый желающий имеет возможность использовать то, что уже наработано, или выполнять собственные разработки, в том числе и такие, которые могут использоваться другими.
Промышленные сети, в зависимости от области применения подразделяются на два уровня:
контроллерные сети (Field level) – промышленные сети этого уровня используются для управления процессом производства, сбором и обработкой данных на уровне промышленных контроллеров;
сенсорные сети (Sensor/actuator level) или сети низовой автоматики – применяются для опроса датчиков и управления работой исполнительных устройств.
Сравнение двух классов сетей в самом общем виде приведено в таблице 5.1.
Таблица 5.1. Сравнительные характеристики сетей типов Fieldbus и Sensor bus
Основные критерии |
Fieldbus |
Sensor bus |
Протяженность сети |
от 100 м до 10 км |
до 1 км |
Время цикла |
от 10 мс до 10 с |
от 1 мс до 1 с |
Объем данных передаваемых за цикл |
от 8 до нескольких сотен байт |
от 1 до 8 байт |
Доступ к шине |
фиксированный/ свободный |
свободный |
Типичные промышленные сети контроллерного уровня:
PROFIBUS (Process Field Bus);
Modbus Plus;
ControlNet.
Типичные сети низовой автоматики:
HART;
Modbus;
ASI (Actuator/Sensor Interface)
DeviceNet.
Промышленная сеть организует физическую и логическую связь датчиков с ПЛК или промышленными компьютерами таким образом, чтобы информация с этого уровня была доступна общезаводской информационной системе. На рис.3.1 показан пример многоуровневой сети, на базе PROFIBUS.
Рис. 3.1. Структура АСУ ТП на базе PROFIBUS
Рисунок иллюстрирует две задачи, решаемые с помощью промышленных сетей:
автоматизация на общезаводском уровне;
автоматизация на уровне управления конкретными технологическими процессами.
Для решения первой задачи необходимо иметь высокую скорость передачи данных, длину линий до 300 метров, на этом уровне требований к взрыво- пожаро-защищенности обычно не предъявляется.
Вторая задача требует следующие качества: среднее время цикла опроса датчиков (до 10 мс), длина линий связи до 1,5 км и более, реализация механизмов внутренней и внешней защиты.