
- •1 Электрическая цепь
- •2 Мгновенная мощность и энергия
- •3 Сопротивление
- •4 Индуктивность
- •5 Емкость
- •6 Замещение физических устройств идеализированными элементами цепи
- •7 Источник эдс и источник тока
- •8 Законы кирхгофа
- •9 Электрическая цепь однофазного синусоидального тока гармонические колебания
- •10 Среднее и действующее значения функции
- •11 Представление гармонических колебаний в виде проекций вращающихся векторов
- •12 Гармонический ток в сопротивлении
- •13 Гармонический ток в индуктивности
- •14 Гармонический ток в емкости
- •15 16 Последовательное соединение r, l, с
- •17 Мощность в цепи гармонического тока
- •18 Применение комплексных чисел
- •19 Законы ома и кирхгофа в комплексной форме
- •20 Комплексная форма записи мощности
- •21. Цепи трехфазного тока. Независимая трехфазная цепь. Зависимая трехфазная цепь. Соединения звезда-звезда.
- •22. Цепи трехфазного тока. Соединения звездой и треугольником. Фазные и линейные токи и напряжения.
- •23. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным токами и напряжениями в трехфазной цепи при соединении звезда-звезда. Векторная диаграмма.
- •24. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным напряжениями в трехфазной цепи при соединении треугольник –треугольник. Векторная диаграмма.
- •26. Магнитные свойства вещества. Ферромагнитные материалы. Зависимость магнитной индукции от напряженности магнитного поля (петля Гистерезиса). Остаточная магнитная индукция. Коэрцитивная сила.
- •27. Явление электромагнитной индукции. Эдс электромагнитной индукции. Индуктивность, самоиндукция, взаимоиндуктивность.
- •28. Генератор постоянного тока. Устройство машины постоянного тока. Принцип действия.
- •30. Кпд и энергетическая диаграмма. Генератор постоянного тока.
- •31. Трансформатор. Устройство трансформатор. Режим холостого хода. Рабочий режим. Режим короткого замыкания
- •32. Электроника. Эффект Эдиссона. Электровакуумные приборы. Электровакуумный диод, его вольтамперные характеристики, применение в схемах выпрямления.
- •38. Электроника. Три схемы включения, транзисторы в схемах усиления.
- •39. Операционный усилитель, его обозначения и принцип действия.
- •46. Методы преобразования электрических схем. Эквивалетные преобразования звезды и треугольника резисторов.
5 Емкость
Емкостью называется идеализированный двухполюсный элемент электрической цепи, приближенно заменяющий конденсатор, в котором накапливается энергия электрического поля. При этом термин «емкость» и соответствующее ему буквенное обозначение С применяются для обозначения способности накапливать энергию электрического поля и для количественной оценки отношения заряда к напряжению на этом элементе:
. (1.7)
Для обозначения физически существующего элемента применяется термин конденсатор.
Если q и uC измеряются в кулонах (К) и вольтах (В), то С измеряется в фарадах (Ф). При этом всегда заряд и напряжение имеют одинаковый знак, так что С > 0.
Зависимость заряда от напряжения в общем случае нелинейна, и, следовательно, параметр С зависит от напряжения.
В случае, когда характеристика q(u) прямолинейна, емкость С постоянна (линейная емкость). На рисунке 1.7 показаны нелинейная и линейная зависимости заряда от напряжения. В этом разделе рассматриваются линейные емкости.
Предположим, что емкость образована двумя пластинами, разделенными диэлектриком. Под влиянием приложенного напряжения на пластинах сосредоточатся равные количества электричества противоположных знаков; пластина с более высоким потенциалом зарядится положительным электричеством, а пластина с более низким потенциалом отрицательным электричеством.
При изменении напряжения, приложенного к пластинам, изменится в соответствии с (1.7) электрический заряд: к пластине, потенциал которой возрастет, поступит дополнительный положительный заряд, а к пластине, потенциал которой снизится, поступит такой же отрицательный заряд.
Ток равен производной электрического заряда по времени. Поэтому с изменением напряжения на емкости в присоединенной к ней последовательно электрической цепи создается ток, величина которого определяется скоростью изменения заряда на емкости
. (1.8)
Здесь знак заряда q соответствует знаку пластины, к которой направлен ток i.
Этот ток рассматривается как ток проводимости в проводниках, присоединенных к емкостному элементу (ток, обусловленный движением заряженных частиц под действием электрического поля в веществе, обладающем электропроводностью), переходящий в ток смещения в диэлектрике емкостного элемента. Последнее понятие, введенное Максвеллом и применяемое в теории поля, означает скалярную величину, прямо пропорциональную скорости изменения напряженности электрического поля (в случае однородного поля и = const).
Напомним, что напряженность электрического поля численно определяется силой, действующей на электрический заряд, равный единице.
Благодаря введению понятия тока смещения ток в цепи с емкостью представляется замкнутым через диэлектрик.
Согласно (1.8) ток положителен, когда заряд q и соответственно напряжение uC возрастают.
На основании (1.8) напряжение на емкости
,
или
.
Здесь, как и в предыдущем параграфе, предполагается, что до рассматриваемого момента времени t процесс мог длиться сколь угодно долго, и поэтому нижний предел интеграла принят равным -.
При t = 0 напряжение на емкости равно
.
Следовательно,
,
т. е. в интервале
времени от нуля до t
напряжение на емкости изменяется на
величину
,
определяемую площадью, ограниченной в
указанном интервале кривой тока i.
Условное графическое изображение емкости с указанием положительных направлений тока и напряжения приведено на рисунке 1.8.
Полярность емкости, указанная на рисунке 1.8 знаками «+» и «-», соответствует положительному напряжению uC, т. е. положительному заряду на пластине «+».
Мгновенная мощность, поступающая в емкость, равна
.
Она связана с процессом накопления или убыли электрического заряда в емкости.
Когда заряд положителен и возрастает, то ток положителен, и в емкость поступает электрическая энергия из внешней цепи.
Когда заряд положителен, но убывает, т.е. ток отрицателен, энергия, ранее накопленная в электрическом поле емкости, возвращается во внешнюю цепь.
Допустим, что к емкости С приложено некоторое напряжение uC. Энергия электрического поля в произвольный момент времени t определится по формуле
. (1.8a)
Здесь учтено, что при t = - напряжение на емкости uC (-) = 0.