
- •1 Электрическая цепь
- •2 Мгновенная мощность и энергия
- •3 Сопротивление
- •4 Индуктивность
- •5 Емкость
- •6 Замещение физических устройств идеализированными элементами цепи
- •7 Источник эдс и источник тока
- •8 Законы кирхгофа
- •9 Электрическая цепь однофазного синусоидального тока гармонические колебания
- •10 Среднее и действующее значения функции
- •11 Представление гармонических колебаний в виде проекций вращающихся векторов
- •12 Гармонический ток в сопротивлении
- •13 Гармонический ток в индуктивности
- •14 Гармонический ток в емкости
- •15 16 Последовательное соединение r, l, с
- •17 Мощность в цепи гармонического тока
- •18 Применение комплексных чисел
- •19 Законы ома и кирхгофа в комплексной форме
- •20 Комплексная форма записи мощности
- •21. Цепи трехфазного тока. Независимая трехфазная цепь. Зависимая трехфазная цепь. Соединения звезда-звезда.
- •22. Цепи трехфазного тока. Соединения звездой и треугольником. Фазные и линейные токи и напряжения.
- •23. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным токами и напряжениями в трехфазной цепи при соединении звезда-звезда. Векторная диаграмма.
- •24. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным напряжениями в трехфазной цепи при соединении треугольник –треугольник. Векторная диаграмма.
- •26. Магнитные свойства вещества. Ферромагнитные материалы. Зависимость магнитной индукции от напряженности магнитного поля (петля Гистерезиса). Остаточная магнитная индукция. Коэрцитивная сила.
- •27. Явление электромагнитной индукции. Эдс электромагнитной индукции. Индуктивность, самоиндукция, взаимоиндуктивность.
- •28. Генератор постоянного тока. Устройство машины постоянного тока. Принцип действия.
- •30. Кпд и энергетическая диаграмма. Генератор постоянного тока.
- •31. Трансформатор. Устройство трансформатор. Режим холостого хода. Рабочий режим. Режим короткого замыкания
- •32. Электроника. Эффект Эдиссона. Электровакуумные приборы. Электровакуумный диод, его вольтамперные характеристики, применение в схемах выпрямления.
- •38. Электроника. Три схемы включения, транзисторы в схемах усиления.
- •39. Операционный усилитель, его обозначения и принцип действия.
- •46. Методы преобразования электрических схем. Эквивалетные преобразования звезды и треугольника резисторов.
38. Электроника. Три схемы включения, транзисторы в схемах усиления.
Электро́ника (от греч. Ηλεκτρόνιο — электрон) — наука о взаимодействии электронов с электромагнитными полями и методах создания электронных приборов и устройств для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации.
Существует
три основные схемы включения транзисторов.
При этом один из электродов транзистора
является общей точкой входа и выхода
каскада. Надо помнить, что под входом
(выходом) понимают точки, между которыми
действует входное (выходное) переменное
напряжение. Основные схемы включения
называются схемами с общим эмиттером
(ОЭ), общей базой (ОБ) и общим коллектором
(ОК). Схема с общим эмиттером (ОЭ). Такая
схема изображена на рисунке 1. Во всех
книжках написано, что эта схема является
наиболее распространненой, т. к. дает
наибольшее усиление по мощности.
Рис. 1 - Схема включения транзистора с
общим эмиттером
Услительные
свойства транзистора характеризует
один из главных его параметров -
статический коэффициент передачи тока
базы или статический коэффициент
усиления по току ?. Поскольку он должен
характеризовать только сам транзистор,
его определяют в режиме без нагрузки
(Rк
= 0). Численно он равен:
К достоинствам схемы ОЭ можно отнести удобство питания ее от одного источника, поскольку на базу и коллектор подаются питающие напряжения одного знака. К недостаткам относят худшие частотные и температурные свойства (например,в сравнении со схемой ОБ). С повышением частоты усиление в схеме ОЭ снижается. К тому же, каскад по схеме ОЭ при усилении вносит значительные искажения.
Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.
Рис. 2 - Схема
включения транзистора с общей базой
Такая схема включения не дает значительного усиления, но обладает хорошими частотными и температурными свойствами. Применяется она не так часто, как схема ОЭ.
Коэффициент
усиления по току схемы ОБ всегда немного
меньше еденицы:
Для схемы ОБ фазовый сдвиг между входным
и выходным напряжением отсутствует, то
есть фаза напряжения при усилении не
переворачивается. Кроме того, при
усилении схема ОБ вносит гораздо меньшие
искажения, нежели схема ОЭ.
Схема
с общим коллектором (ОК). Схема включения
с общим коллектором показана на рисунке
3. Такая схема чаще называется эмиттерным
повторителем.
Рис. 3 - Схема включения транзистора с
общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен ki, т. е. нескольким десяткам.
В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное - сравнительно небольшое. Это является немаловажным достоинством схемы.