
- •1 Электрическая цепь
- •2 Мгновенная мощность и энергия
- •3 Сопротивление
- •4 Индуктивность
- •5 Емкость
- •6 Замещение физических устройств идеализированными элементами цепи
- •7 Источник эдс и источник тока
- •8 Законы кирхгофа
- •9 Электрическая цепь однофазного синусоидального тока гармонические колебания
- •10 Среднее и действующее значения функции
- •11 Представление гармонических колебаний в виде проекций вращающихся векторов
- •12 Гармонический ток в сопротивлении
- •13 Гармонический ток в индуктивности
- •14 Гармонический ток в емкости
- •15 16 Последовательное соединение r, l, с
- •17 Мощность в цепи гармонического тока
- •18 Применение комплексных чисел
- •19 Законы ома и кирхгофа в комплексной форме
- •20 Комплексная форма записи мощности
- •21. Цепи трехфазного тока. Независимая трехфазная цепь. Зависимая трехфазная цепь. Соединения звезда-звезда.
- •22. Цепи трехфазного тока. Соединения звездой и треугольником. Фазные и линейные токи и напряжения.
- •23. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным токами и напряжениями в трехфазной цепи при соединении звезда-звезда. Векторная диаграмма.
- •24. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным напряжениями в трехфазной цепи при соединении треугольник –треугольник. Векторная диаграмма.
- •26. Магнитные свойства вещества. Ферромагнитные материалы. Зависимость магнитной индукции от напряженности магнитного поля (петля Гистерезиса). Остаточная магнитная индукция. Коэрцитивная сила.
- •27. Явление электромагнитной индукции. Эдс электромагнитной индукции. Индуктивность, самоиндукция, взаимоиндуктивность.
- •28. Генератор постоянного тока. Устройство машины постоянного тока. Принцип действия.
- •30. Кпд и энергетическая диаграмма. Генератор постоянного тока.
- •31. Трансформатор. Устройство трансформатор. Режим холостого хода. Рабочий режим. Режим короткого замыкания
- •32. Электроника. Эффект Эдиссона. Электровакуумные приборы. Электровакуумный диод, его вольтамперные характеристики, применение в схемах выпрямления.
- •38. Электроника. Три схемы включения, транзисторы в схемах усиления.
- •39. Операционный усилитель, его обозначения и принцип действия.
- •46. Методы преобразования электрических схем. Эквивалетные преобразования звезды и треугольника резисторов.
22. Цепи трехфазного тока. Соединения звездой и треугольником. Фазные и линейные токи и напряжения.
Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).
В трехфазных цепях применяют два вида соединений генераторных обмоток – в звезду и треугольник (рис. 1).
При соединении в звезду все концы фазных обмоток соединяют в один узел, называемый нейтральной или нулевой точкой, и обозначают, как правило, буквой O.
При соединении в треугольник обмотки генератора соединяют так, чтобы начало одной соединялось с концом другой. ЭДС в катушках в этом случае обозначают соответственно EBA, ECB, EAC. Если генератор не подключен к нагрузке, то по его обмоткам не протекают токи, т.к. сумма ЭДС равна нулю.
Рис. 1 Соединения генераторных обмоток – в звезду и треугольник
В звезду и треугольник включаются и сопротивления нагрузки так, как показано на рис. 2. Фазные сопротивления Za, Zb, Zc, Zab, Zbc, Zca, соединенные в треугольник или в звезду, называют фазами нагрузки.
Напряжение между началом и концом фазы — фазное напряжение Uф,
Таким образом, имеется три фазных напряжения—UA, UB и UС. Обычно за условное положительное направление э. д. с. генератора принимают направление от конца к началу фазы. Положительное направление тока в фазах совпадает с положительным направлением э. д. с., а положительное направление падения напряжения (напряжение) на фазе приемника совпадает с положительным направлением тока в фазе. Положительным направлением напряжения на фазе генератора, как и на фазе приемника, является направление от начала фазы к ее концу, т. е. противоположное положительному направлению э. д. с.
Напряжение между линейными проводами – линейное напряжение Uл.
Таким образом, имеется три линейных напряжения — UAB, UBC, UCA ,условные положительные направления которых приняты от точек, соответствующих первому индексу, к точкам, соответствующим второму индексу. Линейные напряжения определяются через известные фазные напряжения. Это соотношение может быть получено из уравнения, написанного по второму закону Кирхгофа для контура ANBA, если принять направление обхода контура от точки А к точке N и т. д.:
UA — UB — UAB = 0. (10.1)
Отсюда
UAB = UA — UB
и, аналогично,
UBC = UB – UC ,
UCA = UC – UA .
Таким образом, действующее значение линейных напряжений равно векторной разности соответствующих фазных напряжений..
23. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным токами и напряжениями в трехфазной цепи при соединении звезда-звезда. Векторная диаграмма.
Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
Трехфазные источники питания практически всегда выполняются симметричными. В этом случае:
- действующие значения ЭДС
;
- комплексные, активные, индуктивные сопротивления
;
;
;
- фазные коэффициенты мощности
.
- действующие значения фазных напряжений
;
- действующие значения линейных напряжений
,
где
;
;
.
Рисунок 8.5 - Векторная диаграмма напряжений при нагрузке «звезда»
Из векторной диаграммы видно, что
или
.
В
симметричной трехфазной цепи при
соединении фаз звездой действующие
фазные и линейные токи равны друг другу,
а напряжения отличаются друг от друга
в
раз