
- •1 Электрическая цепь
- •2 Мгновенная мощность и энергия
- •3 Сопротивление
- •4 Индуктивность
- •5 Емкость
- •6 Замещение физических устройств идеализированными элементами цепи
- •7 Источник эдс и источник тока
- •8 Законы кирхгофа
- •9 Электрическая цепь однофазного синусоидального тока гармонические колебания
- •10 Среднее и действующее значения функции
- •11 Представление гармонических колебаний в виде проекций вращающихся векторов
- •12 Гармонический ток в сопротивлении
- •13 Гармонический ток в индуктивности
- •14 Гармонический ток в емкости
- •15 16 Последовательное соединение r, l, с
- •17 Мощность в цепи гармонического тока
- •18 Применение комплексных чисел
- •19 Законы ома и кирхгофа в комплексной форме
- •20 Комплексная форма записи мощности
- •21. Цепи трехфазного тока. Независимая трехфазная цепь. Зависимая трехфазная цепь. Соединения звезда-звезда.
- •22. Цепи трехфазного тока. Соединения звездой и треугольником. Фазные и линейные токи и напряжения.
- •23. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным токами и напряжениями в трехфазной цепи при соединении звезда-звезда. Векторная диаграмма.
- •24. . Симметричный режим работы трехфазной цепи. Фазовый оператор. Соотношение между фазным и линейным напряжениями в трехфазной цепи при соединении треугольник –треугольник. Векторная диаграмма.
- •26. Магнитные свойства вещества. Ферромагнитные материалы. Зависимость магнитной индукции от напряженности магнитного поля (петля Гистерезиса). Остаточная магнитная индукция. Коэрцитивная сила.
- •27. Явление электромагнитной индукции. Эдс электромагнитной индукции. Индуктивность, самоиндукция, взаимоиндуктивность.
- •28. Генератор постоянного тока. Устройство машины постоянного тока. Принцип действия.
- •30. Кпд и энергетическая диаграмма. Генератор постоянного тока.
- •31. Трансформатор. Устройство трансформатор. Режим холостого хода. Рабочий режим. Режим короткого замыкания
- •32. Электроника. Эффект Эдиссона. Электровакуумные приборы. Электровакуумный диод, его вольтамперные характеристики, применение в схемах выпрямления.
- •38. Электроника. Три схемы включения, транзисторы в схемах усиления.
- •39. Операционный усилитель, его обозначения и принцип действия.
- •46. Методы преобразования электрических схем. Эквивалетные преобразования звезды и треугольника резисторов.
15 16 Последовательное соединение r, l, с
При прохождении гармонического тока i = Imcosωt через электрическую цепь, состоящую из последовательно соединенных элементов R, L, С (рисунок 2.13), на зажимах этой цепи создается гармоническое напряжение, равное алгебраической сумме гармонических напряжений на отдельных элементах (второй закон Кирхгофа):
и = uR + иL + uC.
Напряжение uR на сопротивлении R совпадает по фазе с током i, напряжение uL на индуктивности L опережает, а напряжение иC на емкости С отстает от i на /2 (рисунок 2.14).
Следовательно, напряжение и на зажимах всей цепи равно:
u = Umcos(ωt + ) = RImcosωt + LImcos(ωt + ) +
+ Imcos(ωt ) = RImcosωt+(L )Imcos(ωt+ ) (2.15)
Уравнение (2.15) представляет тригонометрическую форму записи второго закона Кирхгофа для мгновенных значений напряжений. Входящая в него величина Х =ХL ХC = ωL называется реактивным сопротивлением цепи, которое в зависимости от знака может иметь индуктивный (Х > 0) или емкостный (Х < 0) характер. В отличие от реактивного сопротивления Х активное сопротивление R всегда положительно.
Для нахождения U и φ воспользуемся векторной диаграммой, соответствующей уравнению (2.15). На рисунке 2.15, а показан случай, когда Х > 0, и на рисунке 2.15, б случай; когда Х < 0.
Падение напряжения от тока в активном и реактивном сопротивлениях изображается катетами прямоугольного треугольника напряжения 0аb, гипотенуза которого изображает напряжение на зажимах цепи. Отсюда
U
=
или
.
Полученное выражение показывает, что действующие значения (так же, как и амплитуды) напряжения на зажимах цепи и тока, проходящего через данную цепь, связаны соотношением, аналогичным закону Ома:
U = zI; Um = zIm,
где величина z
=
(2.16)
называется полным сопротивлением рассматриваемой цепи.
Активное, реактивное и полное сопротивления относятся к числу основных понятий, применяемых в теории электрических цепей. Из векторных диаграмм следует, что угол фазового сдвига тока i относительно напряжения и равен:
(2.17)
Если задано
напряжение u
= Umcos(ωt+)
на зажимах цепи с последовательно
соединенными R,
L и С,
то ток определяется по формуле i
=
cos(ωt+)
Угол φ, равный
разности начальных фаз напряжения и
тока, отсчитывается по оси ωt
в направлении от напряжения к току и
является углом острым., прямым или равным
нулю ||
.
Угол
положителен
при индуктивном характере цепи, т.е. при
Х > 0; при
этом ток отстает по фазе от напряжения,
и φ отсчитывается в положительном
направлении: на временной диаграмме
вправо от напряжения к току (рисунок
2.16, а),
а на векторной диаграмме против хода
часовой стрелки от тока
к напряжению U
(рисунок 2.15, а).
Угол отрицателен при емкостном характере цепи, т.е. при X < 0, при этом ток опережает по фазе напряжение, и φ отсчитывается в отрицательном направлении: на временной диаграмме влево от напряжения к току (рисунок 2.16, б), а на векторной диаграмме по ходу часовой стрелки от тока I к напряжению U (рисунок 2.15, б).
Итак, следует всегда помнить, что угол положителен при отстающем и отрицателен при опережающем токе. На временной диаграмме угол отсчитывается от напряжения к току, а на векторной диаграмме от тока к напряжению.
Ток совпадает с напряжением по фазе при X = XL xC = 0, т.е. при равенстве индуктивного и емкостного сопротивлений. Такой режим работы электрической цепи называется резонансом напряжений (гл. 7).
Из выражений (2.16) и (2.17) следует, что активное и реактивное сопротивления цепи связаны с полным сопротивлением формулами:
R = zcos; x = zsin. (2.18)
Умножив правые и левые части выражений (2.18) на действующее значение тока I, получим действующие значения напряжений на активном и реактивном сопротивлениях, изображаемые катетами треугольника напряжений и называемые активной и реактивной составляющими напряжения:
Ua = RI = zcosI = Ucos,
Up = XI = zsinI = Usin. (2.19)
Мгновенные значения напряжений на активном и реактивном сопротивлениях, суммирующиеся алгебраически в соответствии с (2.15), имеют фазовый сдвиг /2. Поэтому непосредственное сложение действующих значений этих функций не дает действующего значения напряжения на всей цепи; как видно из треугольника напряжений и уравнений (2.19), активная и реактивная составляющие напряжения связаны с действующим значением суммарного напряжения формулой
U
=
.
Если все стороны треугольника напряжений разделить на I, то получится прямоугольный треугольник сопротивлений, подобный треугольнику напряжений (рисунок 2.17, а, б).
Треугольник сопротивлений представляет геометрическую интерпретацию уравнений (2.16) и (2.17). Его положение не зависит от начальных фаз напряжения и и тока i: сопротивление R откладывается по горизонтальной оси вправо (в положительном направлении), а реактивное сопротивление X в зависимости от его знака откладывается вверх (X > 0) или вниз (X < 0). Угол в треугольнике сопротивлений отсчитывается от катета R к гипотенузе z, что соответствует отсчету в треугольнике напряжений от Uа = RI к U = zI.
Для характеристики индуктивных катушек, представляемых цепью с последовательным соединением активного и индуктивного сопротивлений, пользуются понятием добротности катушки QL = XL/R, которое равнозначно тангенсу угла сдвига фаз для катушки. Чем меньше сопротивление R, тем выше при прочих равных условиях добротность катушки.
Добротность индуктивных катушек, применяемых в диапазоне частот от 1 кГц до 100 МГц, обычно составляет QL = 50…500.