
- •2 Электрические машины постоянного тока. Генераторы.
- •5. Коммутация в машинах постоянного тока
- •7.Универсальный коллекторный двигатель. Способы возбуждения. Различия в подключении в зависимости от вида тока. Преимущества и недостатки по сравнению с асинхронным и синхронным двигателями.
- •10. Исполнительные двигатели постоянного тока. Якорное управление.
- •(Вопрос 23)Скалярное управление асинхронным двигателем. Диапазон ослабления поля. Опрокидывающий момент.
- •26.Автонастройка электропривода переменного тока. Идентификация, адаптация. Силовая схема. Элементы системы векторного управления.
- •27.Одно- и двухфазные асинхронные двигатели. Передаточные функции и структурные схемы двухфазного асинхронного двигателя.
- •Вопрос 33.Поворотный трансформатор-построитель
- •Вопрос 35. Сельсины. Трансформаторный режим работы.
- •( 38) Индукционные датчики перемещения. Вращающиеся трансформаторы, резольверы, индуктосины
- •40 Датчики перемещения. Одно- и двухканальная схема измерительного преобразователя.
- •41. Требования к датчикам:
- •42. Кодовые оптические датчики считывания. Инкрементальные оптические датчики.
10. Исполнительные двигатели постоянного тока. Якорное управление.
В качестве исполнительных двигателей систем автоматического управления используют в основном машины постоянного тока с независимым возбуждением. Для регулирования угловой скорости ротора исполнительных двигателей постоянного тока используют два основных вида управления:1) непрерывное – изменением во времени амплитуды напряжения; 2) импульсное – изменением времени, в течение которого к двигателю подводится номинальное напряжение. Напряжением управления может быть напряжение на обмотке якоря (якорное управление) или на обмотке возбуждения главных полюсов (полюсное управление).
Якорный непрерывный способ управления.
При анализе характеристик принимаем, что отсутствуют реакция якоря (магнитный поток машины Ф = Фв) и насыщение магнитопровода. Магнитный поток создается током, протекающим по обмотке возбуждения главных полюсов (рис. 11 а), либо постоянными магнитами (рис. 11 б).
Р
ис.
11.
В первом случае обмотка возбуждения постоянно подключается к независимому источнику питания с напряжением U, равным номинальному для двигателя (U=const, Ф=const). Угловая скорость ротора регулируется изменением напряжения управления Uy на обмотке якоря. Анализ состоит из получения уравнений механических и регулировочных характеристик. Эти уравнения принято рассматривать в относительных единицах:
коэффициент сигнала α = Uу/ Uу.ном;
относительная угловая скорость ω* = ω/ωо.ид;
относительный момент M* = Mэм/Mп.
Здесь ωид – угловая скорость идеального х.х. при α = 1, Mп – пусковой момент при α = 1.
Для исполнительного двигателя с якорным управлением при произвольном α уравнение при Rд = 0 принимает вид :
ω = αUу.ном/кФ - Rя/(кФ)2Mэм = ωα о.ид - Rя/(кФ)2Mэм,
Делим правую и левую части уравнения на ωид:
ω /ωид = ω* = α -RяMэм/(кФ)2ωо.ид.
Находим выражение пускового момента при α = 1 , приравнивая ω нулю:
Mn = (кФ)2ωо.ид/Rя,
После преобразований получаем
ω * = α - M*.
При постоянном коэффициенте сигнала α выражение ω * = α - M* является уравнением механической характеристики ω* = f(M*) исполнительного двигателя с якорным управлением, а при постоянном моменте Mпа* - уравнением регулировочной характеристики ω* = f(α). Из выражения следует, что механические и регулировочные характеристики при якорном управлении линейны (рис. 12.). Механические характеристики обеспечивают устойчивость работы двигателя при якорном управлении во всем диапазоне угловых скоростей ω* =0 – 1. Жесткость механических характеристик остается неизменной при любом коэффициенте сигнала α. Максимальный вращающий момент двигатель развивает при пуске. Значение пускового момента в относительных единицах равно коэффициенту сигнала Mпа* = α , т.е. пусковой момент прямо пропорционален напряжению управления. Прямо пропорциональна напряжению управления и скорость холостого хода: ωоа* = α. Якорный способ управления обеспечивает линейную зависимость угловой скорости ротора от напряжения управления при любом моменте нагрузки на валу (рис. 12, б.). Следует отметить, что регулировочная характеристика ненагруженного двигателя начинается от нуля только в идеальном случае (M*=0), когда механические потери в двигателе равны нулю. У реальных исполнительных двигателей в режиме х.х. (пунктирная линия) ротор начинает вращаться при определенном напряжении трогания Uтр, отличном от нуля (соответствующий коэффициент сигнала обозначен αтр). Значение αтр зависит от момента трения в двигателе и определяет зону нечувствительности; у исполнительных двигателей постоянного тока αтр не превышает 0,05. Диапазон регулирования скорости в разомкнутом приводе составляет D = (20 - 10):I.
Р
ис.
12. Механические и регулировочные
характеристики при якорном управлении
При якорном управлении мощность
управления, потребляемая якорем,
составляет 80–95% от всей потребляемой
мощности (меньшие значения относятся
к двигателям меньшей мощности). Мощность
управления Рy=
UyIy
возрастает пропорционально увеличению
напряжения управления и момента нагрузки
на валу. Значительная мощность управления
– недостаток якорного способа, поскольку
возникает необходимость в мощных
источниках сигнала управления
(электронных, магнитных усилителях и
т.д.). Якорный способ управления
исполнительными двигателями постоянного
тока обеспечивает отсутствие самохода.
При снятом сигнале управления ток якоря,
а следовательно, и вращающий момент,
равны нулю и ротор останавливается.
(вопрос 12) Тахогенераторы постоянного тока.
Тахогенератор. Общие сведения о тахогенераторах. Электрические машины малой мощности, работающие в режиме генератора, выходное напряжение которых Uг является практически линейной функцией частоты вращения вала n, называются тахогенераторами. Такие машины используются в автоматических системах управления и регулирования для измерения частоты вращения, для дифференцирования, для обратной связи по скорости и других операций. В качестве тахогенераторов применяются генераторы постоянного и переменного токов, в том числе синхронные и асинхронные генераторы. Обычно мощность таких машин менее 50 кВт.
Основными требованиями, предъявляемыми к тахогенераторам, являются: линейность характеристики Uг(n), большая её крутизна, определяемая как k = Uг/n, малая потребляемая мощность и минимальные погрешности.
Тахогенераторы
постоянного тока. Тахогенераторы
постоянного тока (ТГПТ) представляют
собой генераторы с независимым
возбуждением (рис.1, а)
или с возбуждением от постоянных магнитов
(рис. 1, б).
ЭДС якоря определяется формулой Е=сЕФn.
При постоянном потоке Ф Е
= k n.
При холостом ходе Е=Uг,
т.е. Uг= k n.
Между Uг и n линейная
зависимость (прямая 1 на рис. 2). При
нагрузке на магнитный поток Ф влияет
реакция якоря и поэтому выходная
характеристика несколько отличается
от линейной (кривая 2 на рис. 2). Для
сохранения линейности магнитная цепь
машины должна быть ненасыщенной. Для
ТГПТ допустимая погрешность составляет
0,5 – 3%. При нагрузке
имеет
место падение напряжения в обмотке
якоряRяIя,
между коллектором и щётками Uщ.
В этом случае Uг= Е
– Uщ – RяIя,
так как при малых скоростях Е< Uщ и Uг=0,
на выходной характеристике появляется
зона нечувствительности ЗН (рис.
2, кривая 3). Для уменьшения зоны
нечувствительности надо уменьшить Uщ,
т.е. сопротивление щёток сделать как
можно меньше, а нагрузки – больше.
Кроме отмеченного недостатка, в ТГПТ имеет место пульсация выходного напряжения, которая вызвана работой коллектора: неточностью его изготовления, неравномерностью воздушного зазора, зубчатым строением якоря, неровностями коллектора и др. Преимущество ТГПТ заключается в том, что он удовлетворяет основным требованиям, предъявляемым к тахогенераторам.
Рис 1 Рис 2
(вопрос 13) Электрические машины переменного тока. Основные понятия и определения.
Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора, а у асинхронных — всегда должна быть разница скоростей.
Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).
Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.
Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.
По количеству фаз двигатели переменного тока подразделяются на:
однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь;
двухфазные — в том числе конденсаторные;
трёхфазные;
многофазные;
(вопрос 14) Двухобмоточный однофазный трансформатор. Принцип действия. Схема замещения.
Электромагнитная схема однофазного двухобмоточного трансформатора состоит из двух обмоток (рис.1), размещенных на замкнутом магнитопроводе, который выполнен из ферромагнитного материала. Применение ферромагнитного магнитопровода позволяет усилить электромагнитную связь между обмотками, т. е. уменьшить магнитное сопротивление контура, по которому проходит магнитный поток машины. Первичную обмотку 1 подключают к источнику переменного тока — электрической сети с напряжением u1. Ко вторичной обмотке 2 присоединяют сопротивление нагрузки ZH.
Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения — обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X; обмотки НН — буквами а и х.
При подключении к сети в первичной обмотке возникает переменный ток i1 , который создает переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС — е1 и е2, пропорциональные, согласно закону Максвелла, числам витков w1 и w2 соответствующей обмотки и скорости изменения потока dФ/dt.
е1 = - w1 dФ/dt; е2= -w2dФ/dt.
Следовательно, отношение мгновенных и действующих ЭДС в обмотках определяется выражением
-
E1/E2= e1/e2= w1/w2.
(1)
Если пренебречь падениями напряжения в обмотках трансформатора, которые обычно не превышают 3 — 5% от номинальных значений напряжений U1 и U2, и считать E1≈U l и Е2≈U2, то получим
-
U1/U2≈w1/w2.
(2)
Следовательно, подбирая соответствующим образом числа витков обмоток, при заданном напряжении U1 можно получить желаемое напряжение U2. Если необходимо повысить вторичное напряжение, то число витков w2 берут больше числа w1; такой трансформатор называют повышающим. Если требуется уменьшить напряжение U2, то число витков w2 берут меньшим w1; такой трансформатор называют понижающим,
Отношение ЭДС ЕВН обмотки высшего напряжения к ЭДС ЕНН обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации
-
k= ЕВН/ЕНН = wВН/wНН
(3)
Коэффициент k всегда больше единицы.
В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из-за внутренних потерь энергии в трансформаторе). Следовательно,
-
I1/I2≈ U2/U1≈ w2/w1.
(4)
При увеличении вторичного напряжения трансформатора в k раз по сравнению с первичным, ток i2 во вторичной обмотке соответственно уменьшается в k раз.
Трансформатор может работать только в цепях переменного тока. Если первичную обмотку трансформатора подключить к источнику постоянного тока, то в его магнито-проводе образуется магнитный поток, постоянный во времени по величине и направлению. Поэтому в первичной и вторичной обмотках в установившемся режиме не индуцируются ЭДС, а следовательно, не передается электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС E1 первичной обмотке ток I1 =U1R1 весьма большой.
Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать нагрузочное сопротивление. Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации к, то для цепи источника
R' = P1/I12≈ P2/I12≈ I22R/I12≈ k2R |
(5) |
где Р1— мощность, потребляемая трансформатором от источника переменного тока, Вт;
Р2 = I22R≈ P1 — мощность, потребляемая сопротивлением R от трансформатора.
Таким образом, трансформатор изменяет значение сопротивления R в k2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников электрической энергии.
Схема замещения трансформатора
Систему уравнений
;
; (6)
.
описывающую
электромагнитные процессы в трансформаторе,
можно свести к одному уравнению, если
учесть, что
,
и положить
.
При этом параметры R0 и X0 следует выбирать так, чтобы в режиме холостого хода, когда ЭДС E1 практически равна номинальному напряжению U1, ток
по
модулю равнялся бы действующему значению
тока холостого хода, а мощность
–
мощности, забираемой трансформатором
из сети при холостом ходе.
Решим систему уравнений (6) относительно первичного тока
. (7)
В соответствии с уравнением (7) трансформатор можно заменить электрической схемой, по которой можно определить токи Í1 и Í2, мощность P1, забираемую из сети, мощность ΔP потерь и т.д. Такую электрическую схему называют схемой замещения трансформатора (рис.3).
Р
ис.
3
Эквивалентное сопротивление этой схемы
,
где:
;
;
;
.
Схема
замещения трансформатора представляет
собой сочетание двух схем замещения -
первичной и вторичной обмоток, которые
соединены между собой в точках а и б. В
цепи первичной обмотки включены
сопротивления R1 и
X1,
а в цепи вторичной обмотки – сопротивления
R′2 и
X′2.
Участок схемы замещения между точками
а и б, по которому проходит ток I10,
называют намагничивающим контуром. На
вход схемы замещения подают напряжение
Ú1,
к выходу ее подключают переменное
сопротивление нагрузки
,
к которому приложено напряжение –Ú′2.
.
Полная
мощность приведенного контура вторичной
обмотки в схеме замещения равна мощности
вторичной обмотки реального трансформатора:
I′2 E′2=
(I2 /n
)E2n
= E2 I2,
а мощность электрических потерь в
приведенном вторичном контуре этой
схемы равна мощности потерь во вторичной
обмотке реального трансформатора:
.
Относительные падения напряжений в активном и индуктивном сопротивлениях приведенного вторичного контура также остаются неизменными, как и в реальном трансформаторе:
;
.
Вопрос №16
Трехфазный асинхронный двигатель. Основные понятия и определения.
Трёхфазный двигатель — электродвигатель, который конструктивно предназначен для питания от трехфазной сети переменного тока.
Представляет собой машину переменного тока, состоящую из статора с тремя обмотками, магнитные поля которых сдвинуты в пространстве на 120° и при подаче трехфазного напряжения образуют вращающееся магнитное поле в магнитной цепимашины, и из ротора (различной конструкции, вращающегося несколько медленнее поля статора.
Основные параметры асинхронного двигателя указываются на его паспортной табличке: типоразмер, номинальная мощность, режим работы, номинальная частота вращения, номинальный ток, номинальное напряжение, коэффициент мощности; КПД, степень защиты IP, температурный класс изоляции.
Номинальная мощность PN двигателя зависит от температуры окружающей среды и высоты над уровнем моря. Номинальная мощность, указанная на заводской табличке, действительна при температуре окружающей среды до 40 °C и высоте не более 1000 м над уровнем моря. При отклонениях от этих данных номинальную мощность следует снизить, пересчитав ее по следующей формуле:
г
де
PN1
– сниженная номинальная мощность [кВт];
PN – номинальная мощность [кВт];
fT – температурный коэффициент пересчета;
fH – высотный коэффициент пересчета.
По действующему стандарту на заводской табличке двигателя в качестве номинальной мощности PN указывают его выходную мощность, т. е. механическую мощность, создаваемую на валу двигателя. Двигатели большего типоразмера имеют более благоприятный КПД η и коэффициент мощности cos φ, чем двигатели меньшего типоразмера. КПД и коэффициент мощности изменяются и в зависимости от степени использования двигателя, а именно, снижаются при работе в режиме неполной нагрузки.
Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0–100 %. Если S ≈0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента, если S ≈1 – режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 =0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.
Допуски
Таблица 1
В соответствии с действующим стандартом существуют триосновных номинальных режима работы электрических машин, Продолжительный номинальный режим – когда при неизменной номи-
нальной нагрузке Pн работа машины продолжается так долго, что температура всех ее частей успевает достигнуть установившихся значений τуст. Условное обозначение режима S1. Различают продолжительный режим с неизменной на-грузкой P = const (рис. 2, а) и продолжительный режим с изменяющейся на-грузкой (рис. 2, б).
Кратковременный номинальный режим S2 – когда периоды неизменной номинальной нагрузки чередуются с периодами включения двигателя (рис. 2, в).
В условном обозначении кратковременного режима указывается продолжительность периода нагрузки, например S2– 30 мин. В кратковременном режиме работают приводные двигатели шлюзов, разного рода заслонок и других запорных устройств, регулирующих подачу рабочего вещества через трубопроводы к объекту потребления.
Повторно-кратковременный номинальный режим S3 – когда кратковре- менные периоды номинальной нагрузки двигателя tн чередуются с периодами отключения двигателя (паузами), причем за период нагрузки превышение тем- пературы всех частей не успевает достигнуть установившихся значений, а за время паузы части двигателя не успевают охладиться до температуры окру-жающей среды. Общее время работы двигателя в повторно-кратковременномрежиме разделяется на периодически повторяющиеся циклы. При повторно-кратковременном режиме график нагревания двигателя имеет вид пилообраз-ной кривой (рис. 2, г). Температура двигателя колеблется от τmin до τmax .
(17 вопрос) Синхронные двигатели. Конструкция, принцип действия
В отличие от асинхронного двигателя частота вращения синхронного двигателя постоянная при различных нагрузках. Синхронные двигатели находят применение для привода машин постоянной скорости (насосы, компресоры, вентиляторы).
В статоре синхронного электродвигателя размещается обмотка, подключаемая к сети трехфазного тока и образующая вращающееся магнитное поле. Ротор двигателя состоит из сердечника с обмоткой возбуждения. Обмотка возбуждения через контактные кольца подключается к источнику постоянного тока. Ток обмотки возбуждения создает магнитное поле, намагничивающее ротор.
Роторы
синхронных машин могут быть явнополюсными
(с явновыраженными полюсами) и
неявнополюсными (с неявновыраженными
полюсами). На рис. 1а изображен сердечник
1 явнополюсного ротора с выступающими
полюсами. На полюсах размещены катушки
возбуждения 2. На рисунке 1б изображен
неявнополюсной ротор, представляющий
собой ферромагнитный цилиндр 1. На
поверхности ротора в осевом направлении
фрезеруют пазы, в которые укладывают
обмотку возбуждения 2. Рис. 1
Рассмотрим принцип работы синхронного двигателя на модели (рис.2) Вращающееся магнитное поле статора представим в виде магнита 1. Намагниченный ротор изобразим в виде магнита 2. Повернем магнит 1 на угол α. Северный магнитный полюс магнита 1 притянет южный полюс магнита 2, а южный полюс магнита 1 - северный полюс магнита 2. Магнит 2 повернется на такой же угол α. Будем вращать магнит 1. Магнит 2 будет вращаться вместе с магнитом 1, причем частоты вращения обоих магнитов будут одинаковыми, синхронными,
n2 = n1. Синхронный двигатель, на роторе которого отсутствует обмотка возбуждения, называется синхронным реактивным двигателем.
Ротор
синхронного реактивного двигателя
изготавливается из ферромагнитного
материала и должен иметь явновыраженные
полюсы.Р
ис.2
Вращающееся магнитное поле статора намагничивает ротор. Явнополюсный ротор имеет неодинаковые магнитные сопротивления по продольной и поперечной осям полюса. Силовые линии магнитного поля статора изгибаются, стремясь пройти по пути с меньшим магнитным сопротивлением. Деформация магнитного поля вызовет, вследствие упругих свойств силовых линий, реактивный момент, вращающий ротор синхронно с полем статора.
Если к вращающемуся ротору приложить тормозной момент, ось магнитного поля ротора повернется на угол θ относительно оси магнитного поля статора.
С увеличением нагрузки этот угол возрастает. Если нагрузка превысит некоторое допустимое значение, двигатель остановится, выпадет из синхронизма.
У синхронных двигателей отсутствует пусковой момент. Это объясняется тем, что электромагнитный вращающий момент, воздействующий на неподвижный ротор, меняет свое направление два раза за период Т переменного тока. Из-за своей инерционности, ротор не успевает тронуться с места и развить необходимое число оборотов.
В настоящее время применяется асинхронный пуск синхронного двигателя. В пазах полюсов ротора укладывается дополнительная короткозамкнутая обмотка. Вращающее магнитное поле статора индуктирует в короткозамкнутой пусковой обмотке вихревые токи. При взаимодействии этих токов с магнитным полем статора образуется асинхронный электромагнитный момент, приводящий ротор во вращение. Когда частота вращения ротора приближается к частоте вращения статорного поля, двигатель втягивается в синхронизм и вращается с синхронной скоростью. Короткозамкнутая обмотка не перемещается относительно поля, вихревые токи в ней не индуктируются, асинхронный пусковой момент становится равным нулю.
18.Трёхфазный двигатель — электродвигатель, который конструктивно предназначен для питания от трехфазной сети переменного тока.
Представляет собой машину переменного тока, состоящую из статора с тремя обмотками, магнитные поля которых сдвинуты в пространстве на 120° и при подаче трехфазного напряжения образуют вращающееся магнитное поле в магнитной цепи машины, и из ротора — различной конструкции — вращающегося строго со скоростью поля статора (Синхронный двигатель) или несколько медленнее его (Асинхронный двигатель).
Наибольшее распространение в технике и промышленности получил асинхронный трёхфазный электродвигатель с короткозамкнутой обмоткой ротора, также называемой «беличье колесо». Под выражением «трехфазный двигатель» обычно подразумевается именно этот тип двигателя, и именно он описывается далее в статье.
Принцип работы двух и многофазных двигателей был разработан Николой Теслой и запатентован. Доливо-Добровольский усовершенствовал конструкцию электродвигателя и предложил использовать три фазы вместо двух, используемых Н. Теслой. Усовершенствование основано на том, что сумма двух синусоид равной частоты различающихся по фазе дают в сумме синусоиду, это дает возможность использовать три провода (в четвертом «нулевом» проводе ток близок к нулю) при трех фазной системе против четырех необходимых проводов при двухфазной системе токов. Некоторое время усовершенствование Доливо-Добровольского было ограниченно патентом Н.Теслы, который к тому времени успел его продать Д. Вестингаузу.
Режимы работы
Асинхронный двигатель, согласно принципу обратимости электрических машин, может работать как в двигательном, так и в генераторном режимах. Для работы асинхронного двигателя в любом режиме требуется источник реактивной мощности.
В двигательном режиме при подключении двигателя к трехфазной сети переменного тока в обмотке статора образуется вращающееся магнитное поле, под действием которого в короткозамкнутой обмотке ротора наводятся токи, образующие электромагнитный момент вращения, стремящийся провернуть ротор вокруг его оси. Ротор преодолевает момент нагрузки на валу и начинает вращаться, достигая подсинхронной скорости (она же и будет номинальной с учетом момента нагрузки на валу двигателя).
В генераторном режиме при наличии источника реактивной мощности, создающего поток возбуждения, асинхронная машина способна генерировать активную мощность.
Принцип действия
Принцип действия асинхронного электродвигателя основан на взаимодействии индуктированного тока ротора с магнитным потоком статора. При включении обмотки трехфазного двигателя под напряжение источника трехфазного переменного тока внутри расточки статора образуется вращающееся магнитное поле, частота вращения которого равна
n1 = 60fp ,
где n1 - частота вращения магнитного поля, об/мин; f - частота тока, Гц; p - число пар магнитных полюсов двигателя.
Силовые линии вращающегося магнитного поля пересекают стержни короткозамкнутой обмотки ротора, и в них индуктируется ЭДС, которая вызывает появление тока и магнитного потока в роторе двигателя.
Взаимодействие магнитного поля статора с магнитным потоком ротора создает механический вращающий момент, под действием которого ротор начинает вращаться. Частота вращения ротора несколько меньше частоты вращения магнитного поля. Поэтому двигатель называется асинхронным.
Вопрос№ 19 Режимы работы трехфазного асинхронного двигателя.
Режим двигателя
Этот
режим служит для преобразования
потребляемой из сети электрической
энергии в механическую.Р
ис.
6
Пусть обмотка статора создаёт магнитное поле, вращающееся с частотой n0 в указанном направлении (рис. 6). Это поле будет наводить согласно закону электромагнитной индукции в обмотке ротора ЭДС. Направление ЭДС определяется по правилу правой руки и показано на рисунке (силовые линии должны входить в ладонь, а большой палец нужно направить по направлению движения проводника, т.е. ротора, относительно магнитного поля). В обмотке ротора появится ток, направление которого примем совпадающим с направлением ЭДС. В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила F. Направление силы определяется по правилу левой руки (силовые линии должны входить в ладонь, четыре пальца – по направлению тока в обмотке ротора). В данном режиме (рис. 6) электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой n. Направление вращения ротора совпадает с направлением вращения магнитного поля. Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения магнитного поля. Для реверса двигателя нужно изменить порядок чередования фаз подведённого напряжения, т.е. переключить две фазы.
Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n=n0). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2=0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n0 и ротора n ввели коэффициент, который назвали скольжением и обозначили буквой S. Скольжение может измеряться в относительных единицах и в процентах.
S=(n0−n)/n0 или S=[(n0−n)/n0]100%.
При пуске в ход асинхронного двигателя n=0,S=1. В режиме идеального холостого хода n=n0,S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:
0<S≤1.
При работе асинхронных двигателей в номинальном режиме:
Sн=(2÷5)%.
В режиме реального холостого хода асинхронных двигателей:
Sхх=(0,2÷0,7)%.
Режим генератора
Этот режим служит для преобразования механической энергии в электрическую, т.е. асинхронная машина должна развивать на валу тормозной момент и отдавать в сеть электрическую энергию. Асинхронная машина переходит в режим генератора, если ротор начинает вращаться быстрее магнитного поля (n>n0). Этот режим может наступить, например, при регулировании частоты вращения ротора.
Пусть n>n0. При этом изменится (по сравнению с режимом двигателя) направление ЭДС и тока ротора, а также изменится направление электромагнитной силы и электромагнитного момента (рис. 7). Машина начинает развивать на валу тормозной момент (потребляет механическую энергию) и возвращает в сеть электрическую энергию (изменилось направление тока ротора, т.е. направление передачи электрической энергии).
Р
ис.
7
При n>n0,S=0.
При n→+∞,S→−∞.
Таким образом, в режиме генератора скольжение изменяется в пределах:
0>S>−∞.
Режим электромагнитного тормоза
Этот режим работы наступает, если ротор и магнитное поле вращаются в разные стороны. Этот режим работы имеет место при реверсе асинхронного двигателя, когда изменяют порядок чередования фаз, т.е. изменяется направление вращения магнитного поля, а ротор по инерции вращается в прежнем направлении.
Согласно рис. 8 электромагнитная сила будет создавать тормозной электромагнитный момент, под действием которого будет снижаться частота вращения ротора, а затем произойдёт реверс.
В режиме электромагнитного тормоза машина потребляет механическую энергию, развивая на валу тормозной момент, и одновременно потребляет из сети электрическую энергию. Вся эта энергия идёт на нагрев машины.
Р
ис.8
При n=n0,S=1.
При n→−∞,S→+∞.
Таким образом, в режиме электромагнитного тормоза скольжение изменяется в пределах:
0<S<∞.
(вопрос 20)Пуск асинхронных двигателей с фазным и с коротрозамкнутым ротором.
При включении асинхронного двигателя в сеть переменного тока по обмоткам его статора и ротора будут проходить токи, в несколько раз больше номинальных. Это объясняется тем, что при неподвижном роторе вращающееся магнитное поле пересекает его обмотку с большой частотой, равной частоте вращения магнитного поля в пространстве, и индуктирует в этой обмотке большую эдс. Эта эдс создает большой ток в цепи ротора, что вызывает возникновение соответствующего тока и в обмотке статора.
При увеличении частоты вращения ротора скольжение уменьшается, что приводит к уменьшению эдс и тока в обмотке ротора. Это, в свою очередь, вызывает уменьшение тока в обмотке статора.
Большой пусковой ток нежелателен как для двигателя, так и для источника, от которого двигатель получает энергию. При частых пусках большой ток приводит к резкому повышению температуры обмоток двигателя, что может вызвать преждевременное старение их изоляции.
В сети при больших токах понижается напряжение, которое оказывает влияние на работу других приемников энергии, включенных в эту же сеть.
Поэтому прямой пуск двигателя непосредственным включением его в сеть допускается только в том случае, когда мощность двигателя, намного меньше мощности источника энергии, питающего сеть.
Если мощность двигателя соизмерима с мощностью источника энергии, то необходимо уменьшить ток, потребляемый этим двигателем при пуске в ход.Двигатели с фазным ротором обладают очень хорошими пусковыми свойствами. Для уменьшения пускового тока обмотку ротора замыкают на активное сопротивление, называемое пусковым реостатом (изо).
При включении такого сопротивления в цепь обмотки ротора ток в ней уменьшается, а следовательно, уменьшаются токи как в обмотке статора, так и потребляемый двигателем из сети. При этом увеличится активная составляющая тока ротора и, следовательно, вращающий момент, развиваемый двигателем при пуске в ход.
Пусковые реостаты имеют несколько контактов, поэтому можно постепенно уменьшать сопротивление, введенное в цепь обмотки ротора. После достижения ротором нормальной частоты вращения реостат полностью выводится, т. е. обмотку ротора замыкают накоротко.
При нормальной частоте ротора скольжение мало и эдс, индуктируемая в его обмотке, также незначительна. Поэтому никакие добавочные сопротивления в цепи ротора не нужны.
Пусковые реостаты работают непродолжительное время в процессе разгона двигателя и рассчитываются на кратковременное действие. Если оставить реостат включенным длительное время, то он выйдет из строя.
Двигатели с короткозамкнутым ротором при малой мощности их по сравнению с мощностью источника энергии пускают в ход непосредственным включением в сеть.
При большой же мощности двигателей пусковой ток уменьшают, понижая приложенное напряжение. Для понижения напряжения на время пуска двигатель включают в сеть через понижающий автотрансформатор или реакторы. При вращении ротора с нормальной частотой вращения двигатель переключают на полное напряжение сети.
Недостатком
такого способа пуска двигателя в ход
является резкое уменьшение пускового
момента. Для уменьшения пускового тока
в N раз необходимо приложенное
напряжение понизить также в N раз.
При этом пусковой момент, пропорциональный
квадрату напряжения, уменьшится в
N
раз.
Таким образом, понижение напряжения
допустимо при пуске двигателя без
нагрузки или при малых нагрузках, когда
пусковой момент может быть небольшим.
Часто двигатель пускают в ход
посредством переключения обмотки
статора со звезды на треугольник (изо).
В момент пуска обмотку статора соединяют
звездой, а после того как двигатель
разовьет частоту вращения, близкую к
нормальной, ее переключают треугольником.
При таком способе пуска двигателя в ход пусковой ток в сети уменьшается в три раза по сравнению с пусковым током, который потреблялся бы двигателем, если бы при пуске обмотка статора была соединена треугольником.
Этот способ пуска можно применять для двигателя, обмотка статора которого при питании от сети данного напряжения должна быть соединена треугольником.