
- •5. Хранение файлов и каталогов.
- •7. Защита целостности данных.
- •8. Дополнительные возможности ntfs.
- •7. Сравнение структуры логического диска fat (fat32) и тома ntfs.
- •10. Архитектура памяти ms Windows 2000. Менеджер вп. Виртуальное ап. Средства защиты памяти. Страничное преобразование. Реализация свопинга в ms Windows 2000-2003.
- •11. Архитектура памяти ms Windows 2000-2003. Организация «статической» виртуальной памяти. Блоки адресов. Состояния блоков адресов. Функции Win32 api.
- •12. Архитектура памяти в ms Windows 200-2003. Организация «динамической» виртуальной памяти. Назначение и преимущество по сравнению с кучами ansi c. Функции Win32 api.
- •13. Архитектура памяти в ms Windows 2000-2003. Проецируемые файлы, назначение и использование. Функции Win32 api.
- •14. Архитектура памяти в ms Windows 2000-2003. Использование локальной памяти потока. Функции Win32 api.
- •15. Архитектура памяти в ms Windows 2000-2003. Адресация расширенного адресного пространства. 64-разрядные операционные системы ms Windows.
- •16. Объекты управления центральным процессором и объединения ресурсов в ms Windows 2000-2003. Атрибуты процессов и потоков. Классы приоритетов.
- •16.1, 16.2 Управление центральным процессором и объединение ресурсов.
- •16.6 Классы приоритетов.
- •17. Общие принципы диспетчеризация (планирование загрузки) в ms Windows 2000-2003. Классы приоритетов. Относительные приоритеты. Динамическое изменение приоритетов.
- •17.1 Общие принципы диспетчеризация (планирование загрузки) в ms Windows 2000-2003.
- •17.4 Динамическое изменение приоритетов.
- •18. Граф состояний потоков в ms Windows 2000-2003. Поток простоя. Принципы адаптивного планирования.
- •18.1 Граф состояний потоков в ms Windows 2000.
- •18.2 Поток простоя.
- •18.3 Принципы адаптивного планирования.
- •19. Граф состояний потоков в ms Windows 2000-2003. Особенности планирования в многопроцессорных системах. Особенности планирования в ос ms Windows Vista и Server 2008.
- •19.2 Особенности планирования в многопроцессорных системах.
- •19.3 Особенности планирования в ос ms Windows Vista и Server 2008.
- •20. Планирование загрузки процессорного времени в ms windows 2000-2003. Функции win 32 api создания и завершение процессов и потоков, управление потоками
- •21. Атомарные операции и lockless программирование. Реализация многопоточности с
- •21.1 Атомарные операции и lockless программирование.
- •21.2 Реализация многопоточности с использованием технологии OpenMp
- •21.3 Реализация блокировок и синхронизация потоков в OpenMp
- •22. Критические секции и состязания. Семафоры, Мьютексы. Задача о читателях и писателях. Задача о философах. Взаимная блокировка (тупики).
- •23. Синхронизация потоков с использованием объектов ядра ms Windows 2000-2003. Основные принципы синхронизации. События. Семафоры. Функции win 32 api.
- •24. Синхронизация потоков с использованием объектов ядра ms Windows 2000-2003. Основные принципы синхронизации. Таймеры ожидания. Мьютексы. Функции win 32 api.
- •25. Межпроцессорное взаимодействие. Передача информации в ms Windows 2000-2003. Анонимные каналы. Почтовые ящики. Функции win 32 api.
- •26. Межпроцессорное взаимодействие. Передача информации в ms Windows 2000-2003. Именованные каналы. Почтовые ящики. Функции win 32 api.
16.6 Классы приоритетов.
Приоритетный режим обслуживания:
Разработчик ПО может использовать приоритеты от 1 до 31.
Нулевой приоритет зарезервирован для потока обнуления страниц.
Поток наследует приоритет процесса, породившего его.
ОС Windows NT 4.0 предоставляет 4 класса приоритетов: Realtime, High, Normal и Idle.
ОС Windows 2000: еще 2 дополнительных класса приоритетов – Below Normal и Above Normal.
Относительный приоритет потока: idle, lowest, below normal, normal (обычный), above normal, highest и time-critical.
Классы приоритета процессов:
17. Общие принципы диспетчеризация (планирование загрузки) в ms Windows 2000-2003. Классы приоритетов. Относительные приоритеты. Динамическое изменение приоритетов.
17.1 Общие принципы диспетчеризация (планирование загрузки) в ms Windows 2000-2003.
Планирование загрузки однопроцессорной системы.
Планирование загрузки процессорного времени:
В Windows реализована вытесняющая многозадачность, при которой ОС не ждет, когда поток сам захочет освободить процессор, а принудительно снимает его с выполнения после того, как тот израсходовал отведенное ему время (квант), или если в очереди готовых появился поток с более высоким приоритетом (дисциплина обслуживания с абсолютными приоритетами).
Планировщик всегда выбирает из очереди поток с наивысшим приоритетом; если сразу несколько потоков имеют одинаковый приоритет, планировщик предоставляет квант процессорного времени каждому из них по очереди.
Если поток по каким-то причинам преждевременно перестает быть активным (например, когда останавливается в ожидании завершения операции ввода/вывода), ядро Windows вызывает планировщик для поиска следующего потока, которому можно передать управление процессором.
Если поток выбирает весь отведенный ему квант времени, ядро Windows вызывает планировщик с тем, чтобы другие потоки также могли выполнять свою работу. Переключение процессора с выполнения команд одного потока на выполнение команд другого называют переключением контекста.
Квантование времени:
ОС выделяет потокам кванты времени по принципу карусели. Чтобы все эти потоки работали, ОС отводит каждому из них определенное процессорное время. Выделяя потокам кванты времени по принципу карусели, она создает тем самым иллюзию одновременного выполнения потоков. Слайд иллюстрирует распределение процессорного времени между потоками на машине с одним процессором. Если в машине установлено более одного процессора, алгоритм работы ОС значительно усложняется (в этом случае система стремится сбалансировать нагрузку между процессорами).
По умолчанию в Windows 2000 Professional и Windows ХР потоки выполняются в течение 2 интервалов таймера (clock intervals), а в системах Windows Server 2000, 2003 – 12 интервалов таймера. В зависимости от конкретной аппаратной платформы, интервал таймера составляет примерно 10 или 15 мс. В серверных системах величина кванта увеличена для того, чтобы свести к минимуму переключение контекста. Получая больший квант, серверные приложения, которые пробуждаются при получении клиентского запроса, имеют больше шансов выполнить запрос и вернуться в состояние ожидания до истечения выделенного кванта.
17.3 Относительные приоритеты потоков.
Относительный приоритет потока |
Описание |
Time-critical |
Поток выполняется с приоритетом 31 в классе real-time и с приоритетом 15 в других классах |
Highest |
Поток выполняется с приоритетом на два уровня выше обычною для данного класса |
Above normal |
Поток выполняется с приоритетом на один уровень выше обычного для данного класса |
Normal |
Поток выполняется с обычным приоритетом процесса для данного класса |
Below normal |
Поток выполняется с приоритетом на один уровень ниже обычного для данного класса |
Lowest |
Поток выполняется с приоритетом на два уровня ниже обычного для данного класса |
Idle |
Поток выполняется с приоритетом 16 в классе real-time и с приоритетом 1 в других классах |
Иллюстрация по приоритетам для Windows 2000:
Нулевой приоритет зарезервирован для потока обнуления страниц
Приоритеты 17-21 и 27-30 могут использоваться только при написании драйвера, работающего в режиме ядра.