
Аморфные вещества
Главный признак аморфного (от греческого "аморфос" - бесформенный) состояние вещества - отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния.
При охлаждении жидкого вещества не всегда происходит его кристаллизация. при определенных условиях может образоваться неравновесное твердое аморфное (стеклообразное) состояние. В стеклообразном состоянии могут находиться простые вещества (углерод, фосфор мышьяк, сера, селен), оксиды (например, бора, кремния, фосфора), галогениды, халькогениды, многие органические полимеры.
Аморфные тела изотропны, то есть их механические, оптические, электрические и другие свойства не зависят от направления. У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Физическая модель аморфного состояния до сих пор не создана.
Кристаллические вещества
Твердые кристаллы - трехмерные образования, характеризующиеся строгой повторяемостью одного и того же элемента структуры (элементарной ячейки) во всех направлениях. Элементарная ячейка представляет собой наименьший объем кристалла в виде параллелепипеда, повторяющегося в кристалле бесконечное число раз.
Геометрически правильная форма кристаллов обусловлена, прежде всего, их строго закономерным внутренним строением. Если вместо атомов, ионов или молекул в кристалле изобразить точки как центры тяжести этих частиц, то получится трехмерное регулярное распределение таких точек, называемое кристаллической решеткой. Сами точки называют узлами кристаллической решетки.
№10 Направленность химических процессов. Внутренняя энергия, энтальпия и энтропия веществ, их физический смысл.
В механических системах самопроизвольно протекают процессы, в которых уменьшается потенциальная энергия, т.е. критерием самопроизвольности служит неравенство ΔEп<0. Для химических процессов имеются аналогичные критерии. В XIX веке таким критерием считали выполнимость условия ΔH<0 (принцип Бертло). Это казалось правдоподобным, т.к. при ΔH<0 (в экзотермической реакции) система переходит в состояние с меньшей энергией. Однако впоследствии было обнаружено много нарушений принципа Бертло (невозможность протекания некоторых экзотермических реакций и возможность – некоторых эндотермических). Поэтому принцип Бертло в настоящее время не применяется. Его нарушение связано с влиянием энтропии.
Состояние вещества
можно охарактеризовать двояко: 1)
Указать значения измеряемых свойств,
например, температуру и давление. Это
характеристики макросостояния.
2) Указать мгновенные характеристики
каждой частицы вещества – ее положение
в пространстве, скорость и направление
перемещения. Это характеристики
микросостояния. Поскольку тела состоят
из огромного количества частиц, то
данному
макросостоянию
соответствует колоссальное число
различных микросостояний. Это число
называется термодинамической вероятностью
W.
С ней связано одно из фундаментальных
свойств вещества – энтропия:
где
k
– постоянная
Больцмана.
Энтропию измеряют в Дж/К, а для одного моля – в Дж/(моль·К). По смыслу энтропия является мерой неупорядоченности системы. Так, для одного и того же вещества она имеет наибольшее значение в газообразном состоянии и наименьшее – в твердом, а для разных веществ в одном и том же агрегатном состоянии определяется сложностью структуры молекул. Любая система имеет тенденцию к самопроизвольному росту энтропии (ΔS>0). С другой стороны, согласно принципу Бертло, имеется тенденция к снижению энтальпии (ΔH<0). Эти два фактора учитываются в уравнении изобарно-изотермического потенциала: G=H–TS, где T – абсолютная температура. Величина G называется также энергией Гиббса и является одним из важнейших термодинамических потенциалов. При постоянных температуре и давлении изменение энергии Гиббса в процессе определяет возможность его самопроизвольного протекания: ΔG=ΔH–TΔS
Если для некоторой реакции ΔG<0, то она может протекать самопроизвольно, при ΔG>0 реакция принципиально неосуществима; ΔG=0 отвечает состоянию равновесия.
График зависимости ΔG от температуры может иметь различный вид в зависимости от знаков ΔH и ΔS (рисунок 1.1).
Рисунок 1.1 – Графики зависимостей ΔG от температуры.
Из рисунка 1.1 видно, что при ΔH<0 и ΔS>0 процесс протекает самопроизвольно при любых температурах. Напротив, при ΔH>0 и ΔS<0 процесс принципиально неосуществим. Если же знаки ΔH и ΔS совпадают, то реакция может протекать самопроизвольно в некотором интервале температур. Если ΔH=0 (реакция не сопровождается тепловым эффектом), то возможность протекания процесса полностью определяется энтропией. В случае, когда ΔS=0 определяющую роль играет энтальпийный фактор (соблюдается принцип Бертло).
Значение ΔS можно вычислить, пользуясь справочником, где приведены стандартные энтропии многих веществ.
Физический смысл энтальпии — это общее количество энергии (теплоты и работы), которое должно быть подведено к телу, чтобы перевести его из начального состояния в заданное. Изменение энтальпии в любом процессе определяется только начальным и конечным состояниями и не зависит от характера процесса.
Внутренняя энергия является однозначной функцией состояния вещества (или совокупности вещества) и зависит только от параметров состояния, тогда как по отдельности каждая из величин, определяющих внутреннюю энергию (теплота Q, работа W) зависит от пути процесса, переводящего реагенты в продукты. Другой функцией состояния системы является энтальпия – тепловой эффект реакции при постоянном давлении (dН). Теплота Q, выделившаяся или поглощенная в химической реакции, называется тепловым эффектом реакции. Его можно измерить в специальных приборах – калориметрах. Изотермический процесс (Т=соnst) в идеальном газе силы межмолекулярного взаимодействия равны нулю. Внутренняя энергия идеального газа зависит от температуры, количества вещества и не зависит от давления и объема, поэтому для данных условий U=соnst; dU=0.
ΔН - изменение эптальпии (теплосодержания системы), кДж/моль; ΔS - изменение энтропии (меры беспорядка систем), Дж/моль•К; T - температура, К. Изобарный потенциал измеряется в ккал/моль или кДж/моль. Характер изменений ΔG позволяет судить о принципиальной возможности или невозможности протекания процесса: Если ΔG < 0, т. е. изобарный потенциал в ходе реакции уменьшается, то процесс возможен и, начавшись, он протекает самопроизвольно (спонтанно). Если ΔG > 0, то невозможно осуществить процесс в данных условиях. Если ΔG = 0, наблюдается состояние химического равновесия.
№ 11 Изобарно- изотермический потенциал и условия самопроизвольного протекания химических процессов.
Свободная энергия
Гиббса (или
просто энергия
Гиббса, или
потенциал
Гиббса, или
термодинамический
потенциал в
узком смысле) — это величина,
показывающая изменение энергии в ходе
химической реакции и дающая таким
образом ответ на вопрос о принципиальной
возможности протекания химической
реакции; это термодинамический потенциал
следующего вида:
Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)Понятие энергии Гиббса широко используется в термодинамике и химии.Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)
№12 Основы химической кинетики. Факторы, влияющие на скорость химических процессов. Закон действующих масс для гомогенных и гетерогенных процессов.
Кинетика - раздел
химии, изучающий скорость протекания
и механизма химических реакций. Скорость
химических реакций определяется
изменением количества (единица объема
за единицу времени).
Скорость реакции зависит от многих причин. На нее влияют: а) природа реагентов и б) условия проведения процесса: концентрация реагентов, давление (для реакций с участием газов), температура, катализатор, примеси и их концентрации, среда (для реакций в растворах), форма реакционного сосуда (в цепных реакциях), интенсивность света (в фотохимических реакциях), мощность дозы излучения (в радиационно-химических процессах) и др. Основными факторами, которые приходится учитывать во всех процессах, являются концентрации (давления) реагентов, температура и действие катализатора. Рассмотрим влияние каждого из указанных факторов на скорость реакции.
В 1879 г. голландский исследователь Г. Вант-Гофф обнаружил, что при повышении температуры на каждые 10 градусов скорость химической реакции возрастает, в среднем, в 2-4 раза (правило Вант-Гоффа):
где
-
скорость реакции при температуре T1
(начальная температура системы);
-
скорость реакции при температуре T2
(конечная температура системы);
- температурный коэффициент реакции. Это число, показывающее, во сколько раз возрастает скорость данной реакции при повышении температуры на 10 градусов, т.е.
,
где kT - константа скорости реакции при температуре Т; kT+10 - константа скорости реакции при температуре (Т+10); Если концентрации реагентов равны 1 моль/л, то
Влияние температуры на скорость реакции тем значительнее, чем больше значение . Так, если равен трем, то при увеличении температуры на 100 скорость реакции возрастет в 310 раз, т.е. приблизительно в 59 тыс. раз. Следует иметь в виду, что правило Вант-Гоффа позволяет лишь примерно оценить влияние температуры на скорость реакции. Оно применимо для реакций, энергия активации которых находится в пределах: 80 < Ea < 170 кДж. Чем больше Еa, тем большую величину имеет . Графическая зависимость скорости реакции от температуры показана на рис. 5.4.
Скорость химических реакций прямо пропорционально произведению концентрации реагирующих веществ в степенях равных их коэффициентов. mA+nB=C
V=k*Ca^m*Cd^n k=const.
Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы. Например, при сливании (и перемешивании) растворов серной кислоты и тиосульфата натрия помутнение, вызываемое появлением серы, наблюдается во всем объеме раствора: +SH2SO4+Na2S2O3= Na2SO4+Н2O+SO2 Если реакция протекает между веществами, образующими гетерогенную систему, то она может идти только на поверхности раздела фаз, образующих систему. Например, растворение металла в кислоте: Fe+2HCl=FeCl2 + H2. Зако́н де́йствующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ. Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях их стехиометрических коэффициентов. Это определение относится к гомогенным реакциям. Если реакция геторогенная (реагенты находятся в разных агрегатных состояниях), то в уравнениие ЗДМ входят только жидкие или только газообразные реагенты, а твердые исключаются, оказывая влияние только на константу скорости k. Константа скорости k численно равна скорости, если концентрации реагентов постоянны и равны единице.
№13Гомогенный и гетерогенный катализ. Механизмы действия катализаторов. Ингибиторы. Промоторы. Ферменты.
Ката́лиз— избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий. Катализ бывает гомогенным и гетерогенным (контактным). В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой. При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации. При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.
Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.
Диффузия реагирующих веществ к поверхности твердого вещества
Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их
Химическая реакция между реагирующими молекулами
Десорбция продуктов с поверхности катализатора
Диффузия продукта с поверхности катализатора в общий поток
Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).
Механизм действия катализаторов
Механизм действия катализаторов обычно объясняют образованием промежуточных соединений с одним из реагирующих веществ. Так, если медленно протекающую реакцию А + В = АВ вести в присутствии катализатора К, то катализатор вступает в химическое взаимодействие с одним из исходных веществ, образуя непрочное промежуточное соединение: А + К = АК Реакция протекает быстро, так как энергия активации этого процесса мала. Затем промежуточное соединение АК взаимодействует с другим исходным веществом, при этом катализатор высвобождается:
АК + В = АВ + К Энергия активации этого процесса также мала, а потому реакция протекает с достаточной скоростью. Если теперь оба процесса, протекающие одновременно, суммировать, то получим окончательное уравнение быстро протекающей реакции: А + В = АВ Приведем конкретный пример - окисление SО2 в SО3 с участием катализатора NO: SO2 + ½O2 = SO3 A + B = AB Эта реакция протекает медленно. Но при введении катализатора образуется промежуточное соединение: NO + ½ O2 = NO2 K + B = KB и далее SO2 + NO2 = SO3 + NO А + КВ = АВ + К Поверхность катализатора неоднородна. На ней имеются так называемые активные центры, на которых главным образом и протекают каталитические реакции. Реагирующие вещества адсорбируются на этих центрах, в результате чего увеличивается концентрация их на поверхности катализатора. А это отчасти приводит к ускорению реакции. Но главной причиной возрастания скорости реакции является сильное повышение химической активности адсорбированных молекул. Под действием катализатора у адсорбированных молекул ослабляются связи между атомами и они становятся более реакционноспособными. И в этом случае реакция ускоряется благодаря снижению энергии активации (в том числе за счет образования поверхностных промежуточных соединений). Ингибиторы (от лат inhibeo - останавливаю, сдерживаю), вещества, тормозящие хим. реакции. Ингибирование характерно для каталитич и цепных реакций, которые протекают с участием активных центров или активных частиц. Тормозящее действие обусловлено тем, что ингибитор блокирует активные центры катализатора или реагирует с активными частицами с образованием малоактивных радикалов, не способных продолжать цепь. Ингибиторы вводится в систему в концентрации много меньшей, чем концентрации реагирующих веществ (10-2-10-5 моль%). Промоторы (от лат. promoveo — продвигаю), активаторы, вещества, добавление которых к катализатору увеличивает его активность, избирательность или устойчивость. Промотированным катализатором обычно называют такой катализатор, добавка П. к которому невелика, а сам по себе П. каталитически неактивен или малоактивен. В противном случае говорят о смешанных катализаторах
Ферме́нты, или энзи́мы— обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу).