- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
- •4. Основные параметры измерительных преобразователей и их погрешности: систематические и случайные, аддитивные и мультипликативные. Суммирование погрешностей
- •5. Схемы формирования сигналов. Схемы формирования сигналов генераторных измерительных преобразователей. Условие согласования измерительных преобразователей по току, напряжению, мощности.
- •Принцип действия фотоэлектрических преобразователей
- •10. Преобразователи электрических величин в электрические. Измерительные преобразователи рода тока – электронные преобразователи переменного тока в постоянный.
- •11. Преобразователи электрических величин в электрические. Шунты, добавочные сопротивления, делители напряжения, аттенюаторы, измерительные трансформаторы тока и напряжения.
- •12. Преобразователи электрических величин в электрические. Измерительные усилители. Типы измерительных усилителей. Измерительный усилитель типа мдм (модулятор-усилитель – демодулятор).
- •13. Измерительные преобразователи рода тока. Параметры переменных напряжений. Связь между ними. Аналитическое уравнение и график функции Иордана.
- •14. Измерительные преобразователи рода тока. Функция преобразования, чувствительность, погрешность преобразования. Зависимость функции преобразования от формы кривой преобразуемых напряжений.
- •16. Основные понятия в области цифровых измерительных преобразователей: классификация и определение измерительных сигналов – аналоговые, дискретные, цифровые.
- •17. Основные понятия в области цифровых измерительных преобразователей: дискретизация во времени, квантование по уровню, цифровое кодирование. Погрешности дискретизации и квантования сигналов.
- •19. Преобразователи линейных и угловых перемещений в цифровой код. Устройство и принцип действия преобразователей. Схемы включения в цепь. Коды Грея. Оптоэлектронные пары.
- •21. Измерительные преобразователи отношения частот в цифровой код. Устройство и принцип действия, временные диаграмм. Основные метрологич. Хар-ки и оценка погрешности
- •25. Аналого-цифровые преобразователи, реализующие время-импульсный метод преобразования. Устройство, принцип действия, основные метрологические характеристики и оценка погрешности преобразования.
- •2 6. Аналого-цифровые преобразователи, реализующие частотно-импульсный метод преобразования. Устройство, принцип действия и основные метрологические характеристики. Оценка погрешности преобразования.
- •29. Цифроаналоговые измерительные преобразователи. Устройство и принцип действия, основные метрологические характеристики. Передаточная функция. Оценка погрешности преобразования.
- •30. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики магнитоэлектрического измерительного преобразователя.
- •31. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики электромагнитных ип.
- •32. Преобразоаватели электрических величин в неэлектрические. Принцип работы, устройство и характеристика электродинамических ип.
- •33. Преобразователи электрических величин в неэлектрические Принцип работы, устройство и характеристики электростатических ип.
- •34. Преобразователи электрических величин в неэлектрические. Электрооптические устройства индикации. Индикаторные устройства на основе светоизлучающих и светоотражающих элементов.
- •35. Преобразователи электрических величин в неэлектрические. Электронно-лучевая трубка. Устройство и принц действия, основные характеристики.
- •36. Регистрация измерительной информации. Графическая запись. Устройство и принцип действия перьевого самописца с подвижной катушкой.
- •37. Регистрация измерительной информации. Самопишущие электромеханические преобразователи.
- •39. Регистрация измерительной информации. Магнитная запись и воспроизведение аналоговых сигналов. Устройство и принцип действия измерительных преобразователей.
- •41. Регистрация измерительной информации. Магнитная запись и воспроизведение цифровых сигналов. Способ записи с групповым кодированием. Устройство и принцип действия измерительных преобразователей.
- •43. Регистрация измерительной информации. Лазерная запись и воспроизведение цифровых сигналов. Устройство и принцип действия измерительных преобразователей.
- •44. Регистрация измерительной информации. Магнитооптические (мо) носители информации и измерительные преобразователи, используемые для записи и воспроизведения сигналов.
- •45. Электрические информационные сигналы. Основные термины и определения. Классификация электрических информационных сигналов.
- •46. Электрические информационные сигналы. Основные параметры, классификация. Основные источники погрешностей в системе первичной обработки информации.
- •47. Электрические информационные сигналы. Унификация выходных сигналов измерительных преобразователей и цепей. Испытательные и калибровочные сигналы.
- •48. Нормирование измерительной информации. Нормирующие измерительные преобразователи сигналов измерительной информации.
- •49. Нормирование измерительной информации. Согласование измерительных преобразователей с схемами формирования электрических сигналов.
- •50. Нормирование измерительной информации. Мостовые схемы включения измерительных преобразователей. Основы теории мостовых измерительных преобразователей. Равновесные и неравновесные мосты.
- •51. Преобразование сигналов измерительной информации. Линеаризация функций преобразования. Аналоговые и цифровые методы линеаризации. Технические параметры. Погрешности преобразования.
- •52. Измерение неэлектрических и электрических величин с помощью ип. Вихретоковые ип. Устройство и принцип действия.
- •53. Вихретоковые ип. Фазовый метод выделения измерительной информации.
- •54. Вихретоковые ип. Амплитудный метод выделения измерительной информации.
- •55. Измерение неэлектрических и электрических величин с помощью ип. Электроконтактные преобразователи.
- •56. Измерение неэлектрических и электрических величин с помощью ип. Электронный индикатор контакта.
- •57. Измерение неэлектрических и электрических величин с помощью ип. Фотоэлектрические преобразователи и приборы на их основе.
- •58. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь фотоэлектрический сортировочный.
- •59. Измерение неэлектрических и электрических величин с помощью ип. Линейный растровый фотоэлектрич. Преобразователь. Временные диаграммы перемещения с делением шага на 4.
- •60. Измерение неэлектрических и электрических величин с помощью ип. Круговой растровый фотоэлектрический преобразователь.
- •61. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь линейных перемещений на дифракционных решетках.
- •62. Основные напрвления автоматизации приборов для измерения геометрических величин. Электронные уровни.
- •63. Измерение неэлектрических и электрических величин с помощью ип. Структурная схема чувствительного элемента электронного уровня.
- •64. Основные направления автоматизации приборов для измерения геометрических величин. Кругломеры с управлением от эвм.
- •65. Измерение электрических и неэлектрических величин с помощью ип. Кругломеры. Схема автоматического центрирования.
- •66. Основные направления автоматизации приборов для измерения геометрических величин. Фотоэлектрические автоколлиматоры. Схема фотоэл. Автоколлиматора.
- •67. Измерение неэлектрических и электрических величин с помощью измерительных преобразователей. Фотоэлектрические автоколлиматоры. Фотоэлектрический автоколлиматор.
- •68. Основные напрвления автоматизации приборов для измерения геометрических величин. Одночастотный лазерный интерферометр.
- •69. Основные направления автоматизации приборов для измерения геометрических величин. Двухчастотный лазерный интерферометр.
- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
16. Основные понятия в области цифровых измерительных преобразователей: классификация и определение измерительных сигналов – аналоговые, дискретные, цифровые.
По характеру изменения информативного параметра во времени ИС делятся на аналоговые, дискретные и цифровые.
Аналоговый (континуальный) сигнал – это сигнал, описываемый непрерывной или кусочно-непрерывной функцией Sа(t), причём как сама эта функция, так и её аргумент t могут принимать любые значения на заданных интервалах S∈(Smin; Smax) и t∈(tmin; tmax).
Дискретный сигнал (аналогово-импульсный) ИС – это сигнал Sд(t), изменяющийся дискретно по уровню Sду(t) и/или во времени Sдв(t).
Когда значения сигнала Sд(t) существуют в любой момент времени t∈(tmin; tmax) и он принимает любые фиксированные уровни Si его называют дискретным по уровню Sду(t). В случае, когда уровни Sд(t) принимают ряд значений Si = n⋅q (n = 0, 1, 2, ...), кратных кванту q, он является квантованным Sк(t).
СИ будет дискретным во времени – когда он может принимать в любые дискретные моменты времени tm любые значения Sдв(tm)∈(Smin; Smax), называемые выборками, или отсчётами (рисунок 1.2, в). Если величина tm = =m⋅Т и Т = const, то Т называется интервалом (периодом) дискретизации.
Цифровой ИС – сигнал дискретный во времени Sц(n⋅Т) и квантованный по
уровню, принимаемые значения квантованных уровней которого, например, являются последовательностью логических уровней представляющих код числового значения в двоичной системе счисления.
Цифровой ИС является сигналом с кодово-импульсной модуляцией (КИМ).
17. Основные понятия в области цифровых измерительных преобразователей: дискретизация во времени, квантование по уровню, цифровое кодирование. Погрешности дискретизации и квантования сигналов.
(АЦП) преобразует измеряемую непрерывную (аналоговую) величину X(t) в цифровой код. Основные этапы: дискретизация измеряемой величины во времени, квантование ее по уровню и цифровое кодирование. рис 2.1.
Под дискретизацией X(t) во времени понимают преобразование ее в дискретную величину путем сохранения мгновенных значений X(t) только в определенные моменты времени — моменты дискретизации. Промежуток времени между двумя ближайшими моментами дискретизации Δt называют шагом дискретизации, который может быть как постоянным (равномерная дискретизация), так и переменным (неравномерная дискретизация).
Под квантованием X(t) по уровню понимают операцию замены ее истинных мгновенных значений ближайшими фиксированными величинами из некоторой совокупности дискретных значений, называемых уровнями квантования. Уровни квантования представляются соответствующими числами, поэтому операция квантования аналогична с математической точки зрения округлению чисел. Разность X между двумя соседними уровнями квантования называют шагом квантования. Как и t, X может быть постоянным (равномерное квантование) и переменным (неравномерное квантование).
Цифровое кодирование квантованных уровней заключается в формировании дискретных сигналов, несущих информацию об их значениях.
Для непосредственного кодирования одного двоичного разряда достаточно условиться, что нулевому (низкому) уровню сигнала соответствует символ "0", а единичному (высокому) уровню — символ "1". Однако двоичный код неудобен. Поэтому в аналого-цифровых измерительных приборах используются двоично-десятичные (тетрадно-десятичные) коды. Каждая десятичная цифра (0...9) кодируется четырьмя двоичными цифрами 0 и 1 (тетрада). Наибольшее распространение получил код с весовыми коэффициентами 8421.
Процесс дискретизации и квантования преобразуемой величины сопровождается появлением погрешностей. Погрешность дискретизации определяется по теореме Котельникова.
Составляющая погрешности за счет квантования по уровню (погрешность округления) определяется шагом квантования X (можно нормировать как ±1 младшего разряда счета. )
18. Классификация методов АЦП. Основные функциональные узлы АЦП: аналоговые ключи, логические элементы, триггеры, счетчики, дешифраторы. Их устройство и принцип действия. Основные технические и метрологические характеристики.
В зависимости от метода аналого-цифрового преобразования выделяют АЦП, реализующие времяимпульсный, частотно-импульсный и кодоимпульсный методы преобразования.
Ключи — это устройства, выполняющие функции электрически управляемых выключателей и переключателей, посредством которых осуществляется коммутация измеряемых или образцовых сигналов.
Различают аналоговые (измерительные) и цифровые (логические) ключи.
Любой аналоговый ключ состоит из коммутирующего элемента и схемы управления. В АЦП применяются как электромеханические ключи на основе магнитоуправляемых контактов, так и электронные ключи на диодах, биполярных и полевых транзисторах, операционных усилителях и оптронах.
По способу соединения источника коммутируемых сигналов и нагрузки можно выделить четыре базовые схемы аналоговых ключей: последовательный ключ, параллельный ключ, последовательно-параллельный ключ напряжения и последовательно-параллельный ключ тока.
Аналоговые ключи должны иметь малое сопротивление в замкнутом и большое сопротивление в разомкнутом состояниях, высокое быстродействие и хорошую развязку между цепями управляющего и коммутируемого сигналов.
-
а
б
-
в
г
Рисунок 2.6 – Последовательный (а), параллельный (б) ключи и
последовательно-параллельный ключ напряжения (в), последовательно-параллельный ключ тока (г)
Логические элементы
Схема И — устройство, имеющее два или несколько входов и один выход. Сигнал 1 появляется на выходе только в том случае, когда сигналы на всех входах 1.
Схема ИЛИ — устройство с одним выходом и двумя или несколькими входами. Логическая 1 появляется на выходе, когда хотя бы на одном входе есть 1.
Однотипность сигналов на входах и выходах позволяет подключать выходы одних схем ко входам других, причем к одному выходу, если это необходимо, могут быть присоединены входы нескольких схем.
Схема
НЕ. Она имеет один вход и один выход и
превращает 0 в 1, а 1 в 0. Такое преобразование,
называемое отрицанием
или инверсией, обозначается черточкой
над преобразуемой
переменой: Y
=
.
Триггер — один из наиболее распространенных узлов АЦП и других видов цифровых приборов. Основное свойство триггера — способность скачкообразно изменять свое состояние при подаче соответствующей комбинации сигналов на управляющие входы и сохранять новое состояние после окончания действия этих сигналов. Триггеры принято классифицировать по способу записи информации и организации логических связей.
По способу записи информации: асинхронные (нетактируемые) и синхронные (тактируемые). Асинхронный триггер изменяет свое состояние сразу после появления соответствующей комбинации сигналов на управляющих входах. Состояние синхронного триггера изменяется при наличии соответствующей комбинации сигналов на управляющих входах только в момент присутствия сигнала на тактовом входе. Различают тактирование импульсом (статический вход) и фронтом (динамический вход).
Способ организации логических связей является основой классификации триггеров на RS-триггеры (с раздельной установкой), T-триггеры (счетные), D-триггеры (задержки) и т.д.
При поступлении управляющего сигнала на вход R триггер устанавливается в состояние, при котором на прямом выходе Q появляется низкий потенциал, соответствующий логическому 0, а на инверсном выходе
– высокий
потенциал, соответствующий логической
1.
При подаче управляющих импульсов на счетный вход С триггер поочередно переводится из одного состояния в другое.
Счетчики импульсов, называемые еще пересчетными схемами, могут быть в соответствии с применяемым кодом двоичными, двоично-десятичными, а также с любым другим заданным коэффициентом пересчета. Если счетчик работает не только на сложение, но и на вычитание, он называется реверсивным.
Простейшим двоичным счетчиком является T-триггер, имеющий коэффициент пересчета kП = 2. Последовательное (каскадное) соединение n триггеров образует n-разрядный двоичный счетчик с kП = 2n.
Двоично-десятичный счетчик представляет собой каскадное соединение пересчетных схем, имеющих коэффициент преобразования kп = 10. Такие схемы называются декадными счетчиками, или пересчетными декадами.
Декадный счетчик состоит из четырех T-триггеров, соединяемых между собой так, чтобы устойчивые состояния соответствовали принятому двоично-десятичному коду, а число таких состояний соответствовало kп = 10.
а
Дешифраторы
С помощью ДШ осуществляется переход от двоично-десятичной системы счисления к десятичной. Поэтому ДШ можно рассматривать как преобразователь двоично-десятичного кода в десятичный. Он включается на выходе каждой декады и имеет десять выходов. Число, зафиксированное положением триггеров декады, преобразуется в напряжение на том выходе ДШ, номер которого в десятичной системе соответствует этому числу.
