- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
- •4. Основные параметры измерительных преобразователей и их погрешности: систематические и случайные, аддитивные и мультипликативные. Суммирование погрешностей
- •5. Схемы формирования сигналов. Схемы формирования сигналов генераторных измерительных преобразователей. Условие согласования измерительных преобразователей по току, напряжению, мощности.
- •Принцип действия фотоэлектрических преобразователей
- •10. Преобразователи электрических величин в электрические. Измерительные преобразователи рода тока – электронные преобразователи переменного тока в постоянный.
- •11. Преобразователи электрических величин в электрические. Шунты, добавочные сопротивления, делители напряжения, аттенюаторы, измерительные трансформаторы тока и напряжения.
- •12. Преобразователи электрических величин в электрические. Измерительные усилители. Типы измерительных усилителей. Измерительный усилитель типа мдм (модулятор-усилитель – демодулятор).
- •13. Измерительные преобразователи рода тока. Параметры переменных напряжений. Связь между ними. Аналитическое уравнение и график функции Иордана.
- •14. Измерительные преобразователи рода тока. Функция преобразования, чувствительность, погрешность преобразования. Зависимость функции преобразования от формы кривой преобразуемых напряжений.
- •16. Основные понятия в области цифровых измерительных преобразователей: классификация и определение измерительных сигналов – аналоговые, дискретные, цифровые.
- •17. Основные понятия в области цифровых измерительных преобразователей: дискретизация во времени, квантование по уровню, цифровое кодирование. Погрешности дискретизации и квантования сигналов.
- •19. Преобразователи линейных и угловых перемещений в цифровой код. Устройство и принцип действия преобразователей. Схемы включения в цепь. Коды Грея. Оптоэлектронные пары.
- •21. Измерительные преобразователи отношения частот в цифровой код. Устройство и принцип действия, временные диаграмм. Основные метрологич. Хар-ки и оценка погрешности
- •25. Аналого-цифровые преобразователи, реализующие время-импульсный метод преобразования. Устройство, принцип действия, основные метрологические характеристики и оценка погрешности преобразования.
- •2 6. Аналого-цифровые преобразователи, реализующие частотно-импульсный метод преобразования. Устройство, принцип действия и основные метрологические характеристики. Оценка погрешности преобразования.
- •29. Цифроаналоговые измерительные преобразователи. Устройство и принцип действия, основные метрологические характеристики. Передаточная функция. Оценка погрешности преобразования.
- •30. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики магнитоэлектрического измерительного преобразователя.
- •31. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики электромагнитных ип.
- •32. Преобразоаватели электрических величин в неэлектрические. Принцип работы, устройство и характеристика электродинамических ип.
- •33. Преобразователи электрических величин в неэлектрические Принцип работы, устройство и характеристики электростатических ип.
- •34. Преобразователи электрических величин в неэлектрические. Электрооптические устройства индикации. Индикаторные устройства на основе светоизлучающих и светоотражающих элементов.
- •35. Преобразователи электрических величин в неэлектрические. Электронно-лучевая трубка. Устройство и принц действия, основные характеристики.
- •36. Регистрация измерительной информации. Графическая запись. Устройство и принцип действия перьевого самописца с подвижной катушкой.
- •37. Регистрация измерительной информации. Самопишущие электромеханические преобразователи.
- •39. Регистрация измерительной информации. Магнитная запись и воспроизведение аналоговых сигналов. Устройство и принцип действия измерительных преобразователей.
- •41. Регистрация измерительной информации. Магнитная запись и воспроизведение цифровых сигналов. Способ записи с групповым кодированием. Устройство и принцип действия измерительных преобразователей.
- •43. Регистрация измерительной информации. Лазерная запись и воспроизведение цифровых сигналов. Устройство и принцип действия измерительных преобразователей.
- •44. Регистрация измерительной информации. Магнитооптические (мо) носители информации и измерительные преобразователи, используемые для записи и воспроизведения сигналов.
- •45. Электрические информационные сигналы. Основные термины и определения. Классификация электрических информационных сигналов.
- •46. Электрические информационные сигналы. Основные параметры, классификация. Основные источники погрешностей в системе первичной обработки информации.
- •47. Электрические информационные сигналы. Унификация выходных сигналов измерительных преобразователей и цепей. Испытательные и калибровочные сигналы.
- •48. Нормирование измерительной информации. Нормирующие измерительные преобразователи сигналов измерительной информации.
- •49. Нормирование измерительной информации. Согласование измерительных преобразователей с схемами формирования электрических сигналов.
- •50. Нормирование измерительной информации. Мостовые схемы включения измерительных преобразователей. Основы теории мостовых измерительных преобразователей. Равновесные и неравновесные мосты.
- •51. Преобразование сигналов измерительной информации. Линеаризация функций преобразования. Аналоговые и цифровые методы линеаризации. Технические параметры. Погрешности преобразования.
- •52. Измерение неэлектрических и электрических величин с помощью ип. Вихретоковые ип. Устройство и принцип действия.
- •53. Вихретоковые ип. Фазовый метод выделения измерительной информации.
- •54. Вихретоковые ип. Амплитудный метод выделения измерительной информации.
- •55. Измерение неэлектрических и электрических величин с помощью ип. Электроконтактные преобразователи.
- •56. Измерение неэлектрических и электрических величин с помощью ип. Электронный индикатор контакта.
- •57. Измерение неэлектрических и электрических величин с помощью ип. Фотоэлектрические преобразователи и приборы на их основе.
- •58. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь фотоэлектрический сортировочный.
- •59. Измерение неэлектрических и электрических величин с помощью ип. Линейный растровый фотоэлектрич. Преобразователь. Временные диаграммы перемещения с делением шага на 4.
- •60. Измерение неэлектрических и электрических величин с помощью ип. Круговой растровый фотоэлектрический преобразователь.
- •61. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь линейных перемещений на дифракционных решетках.
- •62. Основные напрвления автоматизации приборов для измерения геометрических величин. Электронные уровни.
- •63. Измерение неэлектрических и электрических величин с помощью ип. Структурная схема чувствительного элемента электронного уровня.
- •64. Основные направления автоматизации приборов для измерения геометрических величин. Кругломеры с управлением от эвм.
- •65. Измерение электрических и неэлектрических величин с помощью ип. Кругломеры. Схема автоматического центрирования.
- •66. Основные направления автоматизации приборов для измерения геометрических величин. Фотоэлектрические автоколлиматоры. Схема фотоэл. Автоколлиматора.
- •67. Измерение неэлектрических и электрических величин с помощью измерительных преобразователей. Фотоэлектрические автоколлиматоры. Фотоэлектрический автоколлиматор.
- •68. Основные напрвления автоматизации приборов для измерения геометрических величин. Одночастотный лазерный интерферометр.
- •69. Основные направления автоматизации приборов для измерения геометрических величин. Двухчастотный лазерный интерферометр.
- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
54. Вихретоковые ип. Амплитудный метод выделения измерительной информации.
Для измерителей, использующих амплитудный способ выделения измерительной информации, характерна структурная схема, приведенная на рисунке 3.7. В частотозадающий колебательный контур генератора включена обмотка вихретокового преобразователя. При изменении зазора между измерительным преобразователем и объектом контроля изменяется индуктивность катушки преобразователя, что вызывает изменение частота генерируемых генератором колебаний.
Выходное напряжение генератора поступает на амплитудный (или частотный) преобразователь, постоянное напряжение с выхода которого, пропорциональное амплитуде или отклонению частоты и амплитуды от номинального значения, поступает на индикатор, проградуированный в единицах преобразуемой неэлектрической величины .
Возможно использование следующей аппаратуры:
- преобразователи зазора и вибрации ДЗВ (датчик зазора и вибрации);
- преобразователи перемещения ДПТ;
- блоки согласования для преобразователей ДЗВ и ДПТ;
- цифровые блоки обработки (ПБ) для преобразователей ДЗВ и ДПТ;
- индуктивные преобразователи перемещений ИДП.
Преобразователи предназначены для измерения:
- осевого смещения (ОС);
- виброперемещения (ВП);
- осевого сдвига ротора (ОСР);
- относительного расширения ротора (ОРР);
- теплового расширения турбин (ТРТ);
- числа оборотов (ТХ);
- искривления вала (ИВ);
55. Измерение неэлектрических и электрических величин с помощью ип. Электроконтактные преобразователи.
Электроконтактные преобразователи предназначены для разбраковки деталей на “годные” и “брак”, рассортировки деталей на размерные группы, а также могут быть использованы в качестве электронного индикатора контакта. Электроконтактные преобразователи входят в состав контрольно-сортировочных автоматов, приборов управляющего (активного) контроля, контрольных приспособлений, применяются в щупах координатных измерительных машин как индикатор контакта и в приспособлениях для измерения малых отверстий (от 1 до 13,5 мм) к оптическим измерительным приборам горизонтального исполнения.
Принцип действия электроконтактного преобразователя заключается в использовании перемещения измерительного стержня для замыкания или размыкания электрических контактов, включенных в электрическую цепь со светосигнальным или исполнительным устройством. Имеются три вида преобразователей: предельные (преобразователи размеров), определяющие соответствие контролируемого размера установленной размерной группе, в частности полю допуска; амплитудные (преобразователи колебания размеров), сравнивающие колебания размера (овальность, биение, плоскостность и т.д.) с допустимым, и индикаторы контакта, фиксирующие “координатное” положение контактного щупа измерительного прибора.
Предельный преобразователь (рисунок 3.13,а) модели 233 имеет две пары контактов 2, 3 и 6, 7, замыкание которых происходит при перемещении наконечника 1 измерительного стержня 9 относительно контролируемой детали 10. Движение подвижным контактам 2 и 7 передается от измерительного стержня 9 через рычаг 5. Замыкание каждой пары контактов настраивается микрометрическими винтами 4 и 5 по образцам с предельными размерами I и II.
Амплитудный преобразователь (рисунок 3.13,б) отличается от предельного тем, что он должен выявлять только колебания размера (например, отклонения от круглости, прямолинейности и т. д.) независимо от его значения. Для этого в схему механизма вводят фрикционное звено (полуцилиндр 8 и планка 9), допускающее проскальзывание подвижных элементов преобразователя после замыкания какого-либо из контактов.
При подключении контактов 5, 6 и 1, 2 к светофорному устройству и настройки замыкания контактов (с помощью микрометрических винтов 4 и 3 по измерительной головке 7 или образцовой детали) на допуск отклонения формы (от замыкания одной пары контактов до замыкания другой пары без проскальзывания) форма детали 10 будет в пределах поля допуска при замыкании лишь одной пары контактов или загорании лишь одной лампочки светофора.
