
- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
- •4. Основные параметры измерительных преобразователей и их погрешности: систематические и случайные, аддитивные и мультипликативные. Суммирование погрешностей
- •5. Схемы формирования сигналов. Схемы формирования сигналов генераторных измерительных преобразователей. Условие согласования измерительных преобразователей по току, напряжению, мощности.
- •Принцип действия фотоэлектрических преобразователей
- •10. Преобразователи электрических величин в электрические. Измерительные преобразователи рода тока – электронные преобразователи переменного тока в постоянный.
- •11. Преобразователи электрических величин в электрические. Шунты, добавочные сопротивления, делители напряжения, аттенюаторы, измерительные трансформаторы тока и напряжения.
- •12. Преобразователи электрических величин в электрические. Измерительные усилители. Типы измерительных усилителей. Измерительный усилитель типа мдм (модулятор-усилитель – демодулятор).
- •13. Измерительные преобразователи рода тока. Параметры переменных напряжений. Связь между ними. Аналитическое уравнение и график функции Иордана.
- •14. Измерительные преобразователи рода тока. Функция преобразования, чувствительность, погрешность преобразования. Зависимость функции преобразования от формы кривой преобразуемых напряжений.
- •16. Основные понятия в области цифровых измерительных преобразователей: классификация и определение измерительных сигналов – аналоговые, дискретные, цифровые.
- •17. Основные понятия в области цифровых измерительных преобразователей: дискретизация во времени, квантование по уровню, цифровое кодирование. Погрешности дискретизации и квантования сигналов.
- •19. Преобразователи линейных и угловых перемещений в цифровой код. Устройство и принцип действия преобразователей. Схемы включения в цепь. Коды Грея. Оптоэлектронные пары.
- •21. Измерительные преобразователи отношения частот в цифровой код. Устройство и принцип действия, временные диаграмм. Основные метрологич. Хар-ки и оценка погрешности
- •25. Аналого-цифровые преобразователи, реализующие время-импульсный метод преобразования. Устройство, принцип действия, основные метрологические характеристики и оценка погрешности преобразования.
- •2 6. Аналого-цифровые преобразователи, реализующие частотно-импульсный метод преобразования. Устройство, принцип действия и основные метрологические характеристики. Оценка погрешности преобразования.
- •29. Цифроаналоговые измерительные преобразователи. Устройство и принцип действия, основные метрологические характеристики. Передаточная функция. Оценка погрешности преобразования.
- •30. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики магнитоэлектрического измерительного преобразователя.
- •31. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики электромагнитных ип.
- •32. Преобразоаватели электрических величин в неэлектрические. Принцип работы, устройство и характеристика электродинамических ип.
- •33. Преобразователи электрических величин в неэлектрические Принцип работы, устройство и характеристики электростатических ип.
- •34. Преобразователи электрических величин в неэлектрические. Электрооптические устройства индикации. Индикаторные устройства на основе светоизлучающих и светоотражающих элементов.
- •35. Преобразователи электрических величин в неэлектрические. Электронно-лучевая трубка. Устройство и принц действия, основные характеристики.
- •36. Регистрация измерительной информации. Графическая запись. Устройство и принцип действия перьевого самописца с подвижной катушкой.
- •37. Регистрация измерительной информации. Самопишущие электромеханические преобразователи.
- •39. Регистрация измерительной информации. Магнитная запись и воспроизведение аналоговых сигналов. Устройство и принцип действия измерительных преобразователей.
- •41. Регистрация измерительной информации. Магнитная запись и воспроизведение цифровых сигналов. Способ записи с групповым кодированием. Устройство и принцип действия измерительных преобразователей.
- •43. Регистрация измерительной информации. Лазерная запись и воспроизведение цифровых сигналов. Устройство и принцип действия измерительных преобразователей.
- •44. Регистрация измерительной информации. Магнитооптические (мо) носители информации и измерительные преобразователи, используемые для записи и воспроизведения сигналов.
- •45. Электрические информационные сигналы. Основные термины и определения. Классификация электрических информационных сигналов.
- •46. Электрические информационные сигналы. Основные параметры, классификация. Основные источники погрешностей в системе первичной обработки информации.
- •47. Электрические информационные сигналы. Унификация выходных сигналов измерительных преобразователей и цепей. Испытательные и калибровочные сигналы.
- •48. Нормирование измерительной информации. Нормирующие измерительные преобразователи сигналов измерительной информации.
- •49. Нормирование измерительной информации. Согласование измерительных преобразователей с схемами формирования электрических сигналов.
- •50. Нормирование измерительной информации. Мостовые схемы включения измерительных преобразователей. Основы теории мостовых измерительных преобразователей. Равновесные и неравновесные мосты.
- •51. Преобразование сигналов измерительной информации. Линеаризация функций преобразования. Аналоговые и цифровые методы линеаризации. Технические параметры. Погрешности преобразования.
- •52. Измерение неэлектрических и электрических величин с помощью ип. Вихретоковые ип. Устройство и принцип действия.
- •53. Вихретоковые ип. Фазовый метод выделения измерительной информации.
- •54. Вихретоковые ип. Амплитудный метод выделения измерительной информации.
- •55. Измерение неэлектрических и электрических величин с помощью ип. Электроконтактные преобразователи.
- •56. Измерение неэлектрических и электрических величин с помощью ип. Электронный индикатор контакта.
- •57. Измерение неэлектрических и электрических величин с помощью ип. Фотоэлектрические преобразователи и приборы на их основе.
- •58. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь фотоэлектрический сортировочный.
- •59. Измерение неэлектрических и электрических величин с помощью ип. Линейный растровый фотоэлектрич. Преобразователь. Временные диаграммы перемещения с делением шага на 4.
- •60. Измерение неэлектрических и электрических величин с помощью ип. Круговой растровый фотоэлектрический преобразователь.
- •61. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь линейных перемещений на дифракционных решетках.
- •62. Основные напрвления автоматизации приборов для измерения геометрических величин. Электронные уровни.
- •63. Измерение неэлектрических и электрических величин с помощью ип. Структурная схема чувствительного элемента электронного уровня.
- •64. Основные направления автоматизации приборов для измерения геометрических величин. Кругломеры с управлением от эвм.
- •65. Измерение электрических и неэлектрических величин с помощью ип. Кругломеры. Схема автоматического центрирования.
- •66. Основные направления автоматизации приборов для измерения геометрических величин. Фотоэлектрические автоколлиматоры. Схема фотоэл. Автоколлиматора.
- •67. Измерение неэлектрических и электрических величин с помощью измерительных преобразователей. Фотоэлектрические автоколлиматоры. Фотоэлектрический автоколлиматор.
- •68. Основные напрвления автоматизации приборов для измерения геометрических величин. Одночастотный лазерный интерферометр.
- •69. Основные направления автоматизации приборов для измерения геометрических величин. Двухчастотный лазерный интерферометр.
- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
50. Нормирование измерительной информации. Мостовые схемы включения измерительных преобразователей. Основы теории мостовых измерительных преобразователей. Равновесные и неравновесные мосты.
Мостовой ИП
При измерении параметров электрических цепей широко используются равновесные мостовые цепи, тогда как при измерении неэлектрических величин значительно чаще - неравновесные. Мостовые обеспечивают равенство нулю выходного напряжения путем балансировки мостовой цепи при нулевом значении преобразуемой величины. Параметрический ИП включается в плечо мостовой цепи, называемое рабочим (рисунок 1.10). Отклонение измеряемой величины Х от нуля нарушает баланс, и по значению падения напряжения Uн 0 на нагрузке Rн в измерительной диагонали моста можно судить о значении выходной величины.
Д
ля
повышения чувствительности мостовой
ИЦ параметрические ИП могут включаться
в два и даже во все четыре плеча моста.
Различают неравновесные мостовые цепи
с одним, двумя или четырьмя рабочими
плечами. Неравновесные мосты подразделяются
также на равноплечие (сопротивление
всех плеч при балансе равны),
последовательно-симметричные
(дифференциальный ИП включается в 1- и
2-е или 3- и 4-е плечи); параллельно-симметричные
(ИП включается в 1- и 3-е или 2- и 4-е плечи)
и несимметричные (сопротивления плеч
моста не равны). По виду источника питания
различают мосты с источником ЭДС и
источником тока, а по роду тока -
неравновесные мосты постоянного и
переменного тока.
Дифференциальный мостовой ИП
О
сновным
недостатком мостовой ИЦ является
нелинейная характеристика преобразования
для любых Rн.
Поэтому использую схемы с дифференциальным
мостовым подключением.
Для этой цепи при R3 = R4 = Ro напряжение на нагрузке
Зависимость Uн = F(R) становится линейной при Rн >> Ro (Rн = ). А при питании такой ИЦ от источника тока линейность обеспечивается при любых значениях Rн. Однако, если в последовательно-симметричной цепи используется дифференциальный параметрический ИП, в котором линейно с НЭВ изменяется проводимость (например, индуктивные преобразователи с переменным зазором или емкостные с переменной площадью), то функция преобразования будет линейной при любых Rн с питанием от источника ЭДС. При Rн = 0 с питанием от источника тока эти мостовые цепи получили наибольшее практическое применение.
Достоинствами мостовых ИЦ по сравнению с последовательными и делительными являются:
- более высокая чувствительность;
- более простые способы обеспечения линейности преобразования;
- более высокая точность преобразования.
51. Преобразование сигналов измерительной информации. Линеаризация функций преобразования. Аналоговые и цифровые методы линеаризации. Технические параметры. Погрешности преобразования.
Сигналы могут быть обработаны с использованием методов аналоговой обработки сигналов, цифровых методов обработки сигналов или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов). Термин «комбинированная обработка сигналов» подразумевает, что системой выполняется и аналоговая, и цифровая обработка сигнала. Такая система может быть реализована в виде печатной платы, гибридной интегральной схемы (ИС) или отдельного кристалла с интегрированными элементами. АЦП и ЦАП рассматриваются как устройства комбинированной обработки сигналов, так как в каждом из них реализованы и аналоговые, и цифровые функции. Недавние успехи технологии создания микросхем с очень высокой степенью интеграции позволяют осуществлять комплексную (цифровую и аналоговую) обработку на одном кристалле.
Система линейна в определенном диапазоне измеряемых величин, если ее чувствительность не зависит от значения измеряемой величины. В диапазоне линейности характеристики преобразователя электрический сигнал во всех элементах измерительной цепи пропорционален значениям измеряемой величины, если все другие устройства, связанные с преобразователями (мосты, усилители), также линейны. В таком случае значительно упрощается последующая обработка результатов измерений. Процесс линеаризации направлен на то, чтобы сделать сигнал прямо пропорциональным изменениям измеряемой величины.
Существует ряд способов, позволяющих скорректировать нелинейность характеристики как самого преобразователя, так и измерительной схемы в целом, не допустив при этом отклонений от линейности преобразования в рабочем диапазоне изменения измеряемой величины, и в пределах допускаемой погрешности измерений полагать чувствительность неизменной.
Эти способы условно могут быть разбиты на две группы:
а) корректирующие характеристику преобразователя или схемы аппаратными средствами путем компенсации нелинейности;
б) корректирующие результаты измерений аналоговой или цифровой обработкой выходного сигнала аппаратными и (или) программными средствами.
Обратное нелинейное
преобразование:
.