- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
- •4. Основные параметры измерительных преобразователей и их погрешности: систематические и случайные, аддитивные и мультипликативные. Суммирование погрешностей
- •5. Схемы формирования сигналов. Схемы формирования сигналов генераторных измерительных преобразователей. Условие согласования измерительных преобразователей по току, напряжению, мощности.
- •Принцип действия фотоэлектрических преобразователей
- •10. Преобразователи электрических величин в электрические. Измерительные преобразователи рода тока – электронные преобразователи переменного тока в постоянный.
- •11. Преобразователи электрических величин в электрические. Шунты, добавочные сопротивления, делители напряжения, аттенюаторы, измерительные трансформаторы тока и напряжения.
- •12. Преобразователи электрических величин в электрические. Измерительные усилители. Типы измерительных усилителей. Измерительный усилитель типа мдм (модулятор-усилитель – демодулятор).
- •13. Измерительные преобразователи рода тока. Параметры переменных напряжений. Связь между ними. Аналитическое уравнение и график функции Иордана.
- •14. Измерительные преобразователи рода тока. Функция преобразования, чувствительность, погрешность преобразования. Зависимость функции преобразования от формы кривой преобразуемых напряжений.
- •16. Основные понятия в области цифровых измерительных преобразователей: классификация и определение измерительных сигналов – аналоговые, дискретные, цифровые.
- •17. Основные понятия в области цифровых измерительных преобразователей: дискретизация во времени, квантование по уровню, цифровое кодирование. Погрешности дискретизации и квантования сигналов.
- •19. Преобразователи линейных и угловых перемещений в цифровой код. Устройство и принцип действия преобразователей. Схемы включения в цепь. Коды Грея. Оптоэлектронные пары.
- •21. Измерительные преобразователи отношения частот в цифровой код. Устройство и принцип действия, временные диаграмм. Основные метрологич. Хар-ки и оценка погрешности
- •25. Аналого-цифровые преобразователи, реализующие время-импульсный метод преобразования. Устройство, принцип действия, основные метрологические характеристики и оценка погрешности преобразования.
- •2 6. Аналого-цифровые преобразователи, реализующие частотно-импульсный метод преобразования. Устройство, принцип действия и основные метрологические характеристики. Оценка погрешности преобразования.
- •29. Цифроаналоговые измерительные преобразователи. Устройство и принцип действия, основные метрологические характеристики. Передаточная функция. Оценка погрешности преобразования.
- •30. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики магнитоэлектрического измерительного преобразователя.
- •31. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики электромагнитных ип.
- •32. Преобразоаватели электрических величин в неэлектрические. Принцип работы, устройство и характеристика электродинамических ип.
- •33. Преобразователи электрических величин в неэлектрические Принцип работы, устройство и характеристики электростатических ип.
- •34. Преобразователи электрических величин в неэлектрические. Электрооптические устройства индикации. Индикаторные устройства на основе светоизлучающих и светоотражающих элементов.
- •35. Преобразователи электрических величин в неэлектрические. Электронно-лучевая трубка. Устройство и принц действия, основные характеристики.
- •36. Регистрация измерительной информации. Графическая запись. Устройство и принцип действия перьевого самописца с подвижной катушкой.
- •37. Регистрация измерительной информации. Самопишущие электромеханические преобразователи.
- •39. Регистрация измерительной информации. Магнитная запись и воспроизведение аналоговых сигналов. Устройство и принцип действия измерительных преобразователей.
- •41. Регистрация измерительной информации. Магнитная запись и воспроизведение цифровых сигналов. Способ записи с групповым кодированием. Устройство и принцип действия измерительных преобразователей.
- •43. Регистрация измерительной информации. Лазерная запись и воспроизведение цифровых сигналов. Устройство и принцип действия измерительных преобразователей.
- •44. Регистрация измерительной информации. Магнитооптические (мо) носители информации и измерительные преобразователи, используемые для записи и воспроизведения сигналов.
- •45. Электрические информационные сигналы. Основные термины и определения. Классификация электрических информационных сигналов.
- •46. Электрические информационные сигналы. Основные параметры, классификация. Основные источники погрешностей в системе первичной обработки информации.
- •47. Электрические информационные сигналы. Унификация выходных сигналов измерительных преобразователей и цепей. Испытательные и калибровочные сигналы.
- •48. Нормирование измерительной информации. Нормирующие измерительные преобразователи сигналов измерительной информации.
- •49. Нормирование измерительной информации. Согласование измерительных преобразователей с схемами формирования электрических сигналов.
- •50. Нормирование измерительной информации. Мостовые схемы включения измерительных преобразователей. Основы теории мостовых измерительных преобразователей. Равновесные и неравновесные мосты.
- •51. Преобразование сигналов измерительной информации. Линеаризация функций преобразования. Аналоговые и цифровые методы линеаризации. Технические параметры. Погрешности преобразования.
- •52. Измерение неэлектрических и электрических величин с помощью ип. Вихретоковые ип. Устройство и принцип действия.
- •53. Вихретоковые ип. Фазовый метод выделения измерительной информации.
- •54. Вихретоковые ип. Амплитудный метод выделения измерительной информации.
- •55. Измерение неэлектрических и электрических величин с помощью ип. Электроконтактные преобразователи.
- •56. Измерение неэлектрических и электрических величин с помощью ип. Электронный индикатор контакта.
- •57. Измерение неэлектрических и электрических величин с помощью ип. Фотоэлектрические преобразователи и приборы на их основе.
- •58. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь фотоэлектрический сортировочный.
- •59. Измерение неэлектрических и электрических величин с помощью ип. Линейный растровый фотоэлектрич. Преобразователь. Временные диаграммы перемещения с делением шага на 4.
- •60. Измерение неэлектрических и электрических величин с помощью ип. Круговой растровый фотоэлектрический преобразователь.
- •61. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь линейных перемещений на дифракционных решетках.
- •62. Основные напрвления автоматизации приборов для измерения геометрических величин. Электронные уровни.
- •63. Измерение неэлектрических и электрических величин с помощью ип. Структурная схема чувствительного элемента электронного уровня.
- •64. Основные направления автоматизации приборов для измерения геометрических величин. Кругломеры с управлением от эвм.
- •65. Измерение электрических и неэлектрических величин с помощью ип. Кругломеры. Схема автоматического центрирования.
- •66. Основные направления автоматизации приборов для измерения геометрических величин. Фотоэлектрические автоколлиматоры. Схема фотоэл. Автоколлиматора.
- •67. Измерение неэлектрических и электрических величин с помощью измерительных преобразователей. Фотоэлектрические автоколлиматоры. Фотоэлектрический автоколлиматор.
- •68. Основные напрвления автоматизации приборов для измерения геометрических величин. Одночастотный лазерный интерферометр.
- •69. Основные направления автоматизации приборов для измерения геометрических величин. Двухчастотный лазерный интерферометр.
- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
47. Электрические информационные сигналы. Унификация выходных сигналов измерительных преобразователей и цепей. Испытательные и калибровочные сигналы.
Для настройки и калибровки измерительной техники в качестве испытательных и калибровочных сигналов часто используются периодические сигналы, не содержащие постоянной составляющей и имеющие разнообразную форму: прямоугольную линейную знакопеременную, синусоидальную и т.д. до близкой к дельта-функции.
В качестве математической модели желательно использовать одну простую математическую функцию, которая при изменении одного-двух ее параметров описывала бы с некоторой точностью формы сигналов. Для этого используем функцию Иордана.
Среднеквадратическое и средневыпрямленное значения сигнала описываемого функцией Иордана, зависят от формы и определяются:
Эти выражения позволяет найти все три коэфф. характеризующие сигнал. Эти коэфф. а также коэфф. гармоник Кг зависят от параметра формы . Значения этих кофф. при различных значениях ε берутся из таблицы.
48. Нормирование измерительной информации. Нормирующие измерительные преобразователи сигналов измерительной информации.
На рисунке показаны примеры структурных схем наиболее распространенных типов нормализующих преобразователей: для термопар; для термометров сопротивления; для дифференциально-трансформаторных преобразователей.
Все они выдают сигнал постоянного напряжения U= с унифицированным диапазоном (например от 0 до 10 В).
Схема для термопар (рисунок 2.13,а) включает элемент компенсации температуры холодного спая (ЭК), усилитель постоянного тока (УПТ) и элемент линеаризации (ЭЛ). Последний может отсутствовать, если функция линеаризации выполняется общим устройством обработки информации.
Схема для термометров сопротивления (рисунок 2.13,б) включает мост (М), одним из плеч которого служит терморезистор RТ, и усилитель постоянного тока (УПТ).
Схема для дифференциально-трансформаторных датчиков (рисунок 2.13,в) содержит усилитель переменного тока (У) и фазочувствительный выпрямитель (ФЧВ).
Нормирующие преобразователи могут быть индивидуальными и групповыми.
49. Нормирование измерительной информации. Согласование измерительных преобразователей с схемами формирования электрических сигналов.
В общем случае входное
и выходное
сопротивления рассматриваются как
комплексные.
определяется при подключении
к входу устройства источника напряжения
и равно
.
Где
– значение напряжения на входных
контактах,
– входной ток.
определяется при подключении
к выходу устройства вместо нагрузки
источника напряжения Uвых
и равно
.
Где
– значение напряжения на выходных
контактах,
– ток на выходе.
Условие, при котором
обеспечивается максимальный коэффициент
передачи мощности от источника в
нагрузку, называется условием согласования
и выполняется в случае равенства
внутреннего сопротивления источника
сопротивлению нагрузки
.
Согласование по входу
означает, что внутреннее сопротивление
источника сигнала равно входному
сопротивлению устройства
,
а по выходу – равенство выходного
сопротивления устройства сопротивлению
нагрузки
. Выполнение согласования по входу и
выходу устройства называют полным
согласованием.
М
аксимальная
мощность в нагрузке РН
генераторного преобразователя,
достигается при согласовании модулей
сопротивлений нагрузки и внутреннего
сопротивления преобразователя, т.е. при
a
= 1 (ZН/Zi)
или ZН
= Zi.
Условие, при котором сопротивление
вторичного преобразователя во много
раз превосходит внутреннее сопротивление
преобразователя, называется согласованием
по напряжению.
RН
> 1000 Ri.
При включении вторичного измерительного
преобразователя в разрыв электрической
цепи первичного преобразователя приводит
к необходимости соблюдения следующего
неравенства RН
<< Ri..
Описанный режим согласования наз.
режимом согласования по току.
