
- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
- •4. Основные параметры измерительных преобразователей и их погрешности: систематические и случайные, аддитивные и мультипликативные. Суммирование погрешностей
- •5. Схемы формирования сигналов. Схемы формирования сигналов генераторных измерительных преобразователей. Условие согласования измерительных преобразователей по току, напряжению, мощности.
- •Принцип действия фотоэлектрических преобразователей
- •10. Преобразователи электрических величин в электрические. Измерительные преобразователи рода тока – электронные преобразователи переменного тока в постоянный.
- •11. Преобразователи электрических величин в электрические. Шунты, добавочные сопротивления, делители напряжения, аттенюаторы, измерительные трансформаторы тока и напряжения.
- •12. Преобразователи электрических величин в электрические. Измерительные усилители. Типы измерительных усилителей. Измерительный усилитель типа мдм (модулятор-усилитель – демодулятор).
- •13. Измерительные преобразователи рода тока. Параметры переменных напряжений. Связь между ними. Аналитическое уравнение и график функции Иордана.
- •14. Измерительные преобразователи рода тока. Функция преобразования, чувствительность, погрешность преобразования. Зависимость функции преобразования от формы кривой преобразуемых напряжений.
- •16. Основные понятия в области цифровых измерительных преобразователей: классификация и определение измерительных сигналов – аналоговые, дискретные, цифровые.
- •17. Основные понятия в области цифровых измерительных преобразователей: дискретизация во времени, квантование по уровню, цифровое кодирование. Погрешности дискретизации и квантования сигналов.
- •19. Преобразователи линейных и угловых перемещений в цифровой код. Устройство и принцип действия преобразователей. Схемы включения в цепь. Коды Грея. Оптоэлектронные пары.
- •21. Измерительные преобразователи отношения частот в цифровой код. Устройство и принцип действия, временные диаграмм. Основные метрологич. Хар-ки и оценка погрешности
- •25. Аналого-цифровые преобразователи, реализующие время-импульсный метод преобразования. Устройство, принцип действия, основные метрологические характеристики и оценка погрешности преобразования.
- •2 6. Аналого-цифровые преобразователи, реализующие частотно-импульсный метод преобразования. Устройство, принцип действия и основные метрологические характеристики. Оценка погрешности преобразования.
- •29. Цифроаналоговые измерительные преобразователи. Устройство и принцип действия, основные метрологические характеристики. Передаточная функция. Оценка погрешности преобразования.
- •30. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики магнитоэлектрического измерительного преобразователя.
- •31. Преобразователи электрических величин в неэлектрические. Принцип работы, устройство и характеристики электромагнитных ип.
- •32. Преобразоаватели электрических величин в неэлектрические. Принцип работы, устройство и характеристика электродинамических ип.
- •33. Преобразователи электрических величин в неэлектрические Принцип работы, устройство и характеристики электростатических ип.
- •34. Преобразователи электрических величин в неэлектрические. Электрооптические устройства индикации. Индикаторные устройства на основе светоизлучающих и светоотражающих элементов.
- •35. Преобразователи электрических величин в неэлектрические. Электронно-лучевая трубка. Устройство и принц действия, основные характеристики.
- •36. Регистрация измерительной информации. Графическая запись. Устройство и принцип действия перьевого самописца с подвижной катушкой.
- •37. Регистрация измерительной информации. Самопишущие электромеханические преобразователи.
- •39. Регистрация измерительной информации. Магнитная запись и воспроизведение аналоговых сигналов. Устройство и принцип действия измерительных преобразователей.
- •41. Регистрация измерительной информации. Магнитная запись и воспроизведение цифровых сигналов. Способ записи с групповым кодированием. Устройство и принцип действия измерительных преобразователей.
- •43. Регистрация измерительной информации. Лазерная запись и воспроизведение цифровых сигналов. Устройство и принцип действия измерительных преобразователей.
- •44. Регистрация измерительной информации. Магнитооптические (мо) носители информации и измерительные преобразователи, используемые для записи и воспроизведения сигналов.
- •45. Электрические информационные сигналы. Основные термины и определения. Классификация электрических информационных сигналов.
- •46. Электрические информационные сигналы. Основные параметры, классификация. Основные источники погрешностей в системе первичной обработки информации.
- •47. Электрические информационные сигналы. Унификация выходных сигналов измерительных преобразователей и цепей. Испытательные и калибровочные сигналы.
- •48. Нормирование измерительной информации. Нормирующие измерительные преобразователи сигналов измерительной информации.
- •49. Нормирование измерительной информации. Согласование измерительных преобразователей с схемами формирования электрических сигналов.
- •50. Нормирование измерительной информации. Мостовые схемы включения измерительных преобразователей. Основы теории мостовых измерительных преобразователей. Равновесные и неравновесные мосты.
- •51. Преобразование сигналов измерительной информации. Линеаризация функций преобразования. Аналоговые и цифровые методы линеаризации. Технические параметры. Погрешности преобразования.
- •52. Измерение неэлектрических и электрических величин с помощью ип. Вихретоковые ип. Устройство и принцип действия.
- •53. Вихретоковые ип. Фазовый метод выделения измерительной информации.
- •54. Вихретоковые ип. Амплитудный метод выделения измерительной информации.
- •55. Измерение неэлектрических и электрических величин с помощью ип. Электроконтактные преобразователи.
- •56. Измерение неэлектрических и электрических величин с помощью ип. Электронный индикатор контакта.
- •57. Измерение неэлектрических и электрических величин с помощью ип. Фотоэлектрические преобразователи и приборы на их основе.
- •58. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь фотоэлектрический сортировочный.
- •59. Измерение неэлектрических и электрических величин с помощью ип. Линейный растровый фотоэлектрич. Преобразователь. Временные диаграммы перемещения с делением шага на 4.
- •60. Измерение неэлектрических и электрических величин с помощью ип. Круговой растровый фотоэлектрический преобразователь.
- •61. Измерение неэлектрических и электрических величин с помощью ип. Преобразователь линейных перемещений на дифракционных решетках.
- •62. Основные напрвления автоматизации приборов для измерения геометрических величин. Электронные уровни.
- •63. Измерение неэлектрических и электрических величин с помощью ип. Структурная схема чувствительного элемента электронного уровня.
- •64. Основные направления автоматизации приборов для измерения геометрических величин. Кругломеры с управлением от эвм.
- •65. Измерение электрических и неэлектрических величин с помощью ип. Кругломеры. Схема автоматического центрирования.
- •66. Основные направления автоматизации приборов для измерения геометрических величин. Фотоэлектрические автоколлиматоры. Схема фотоэл. Автоколлиматора.
- •67. Измерение неэлектрических и электрических величин с помощью измерительных преобразователей. Фотоэлектрические автоколлиматоры. Фотоэлектрический автоколлиматор.
- •68. Основные напрвления автоматизации приборов для измерения геометрических величин. Одночастотный лазерный интерферометр.
- •69. Основные направления автоматизации приборов для измерения геометрических величин. Двухчастотный лазерный интерферометр.
- •1. Значение дисциплины "ПиПии" в подготовке инженеров-метрологов. Цели и задачи дисциплины ПиПии, ее связь с другими дисциплинами
44. Регистрация измерительной информации. Магнитооптические (мо) носители информации и измерительные преобразователи, используемые для записи и воспроизведения сигналов.
Процесс записи основан на МО эффектах, а запись основана на термомагнитных явлениях. Магнитооптический носитель информации содержит рабочий МО слой, который представляет собой аморфную магнитную пленку, способную терять намагниченность и коэрцитивную силу при нагреве до определенной температуры(~100-200 °) и обеспечивать в процессе воспроизведения достаточно большой магнитооптический эффект.
Способы записи:
1)В процессе записи предварительно намагниченный МО-слой локально размагничивается, нагреваясь от остросфокусированного луча лазера.
2)Запись происходит путем изменения направления предварительной намагниченности МО-слоя на противоположное. Для этого при локальном нагреве и остывании участка, когда его коэрцитивная сила еще мала, на него воздействуют магнитным полем обратного направления по отношению к полю предварительного намагничивания.(чаще всего используют)
3) запись на предварительно ненамагниченный МО-слой или на МО-слой со старой записью при одновременном ее стирании.
Эффект Керра (чаще используется) - Если луч поляризованного света направить на отражающую намагниченную поверхность, то плоскость поляризации отраженного луча изменяется в зависимости от направления и значения намагниченности отражающей поверхности. Соответственно изменяется световой поток, проходящий через анализатор и попадающий на светоприемник, т.е. намагниченная поверхность его модулирует. Отражающей намагниченной поверхностью в системах записи на МО-носителях является МО-слой, а источником света − тот же лазер, что используется для записи, но с уменьшенной мощностью излучения. Поверхностная плотность записи информации на МО-носителях достигает 106 бит/мм2.
45. Электрические информационные сигналы. Основные термины и определения. Классификация электрических информационных сигналов.
Сигналом называется материальный носитель информации, представляющий собой некоторый физический процесс, один из параметров которого функционально связан с измеряемой физической величиной.
Аналоговый сигнал это сигнал, описываемый непрерывной или кусочно-непрерывной функцией Uа(t), причём как сама эта функция, так и её аргумент t могут принимать любые значения на заданных интервалах U(Umin; Umax) и t(tmin; tmax) .
Дискретный сигнал это сигнал, изменяющийся дискретно во времени или по уровню.
Цифровые сигналы квантованные по уровню и дискретные по времени сигналы которые описываются квантованными решётчатыми функциями (квантованными последовательностями).
По характеру изменения во времени сигналы делятся на постоянные, значения которых в течение времени не изменяются, и переменные, значения которые меняются во времени.
Переменные сигналы могут быть непрерывными во времени и импульсными. Непрерывным называется сигнал, параметры которого изменяются непрерывно. Импульсный сигнал это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен.
По степени наличия априорной информации переменные измерительные сигналы делятся на детерминированные, квазидетерминированные и случайные.
Детерминированный сигнал - это сигнал, закон изменения которого известен, а модель не содержит неизвестных параметров. Мгновенные значения детерминированного сигнала известны в любой момент времени.
Квазидетерминированные сигналы - это сигналы с частично известным характером изменения во времени, т.е. с одним или несколькими неизвестными параметрами.
Детерминированные и квазидетерминированные сигналы делятся на элементарные, описываемые простейшими математическими формулами, и сложные.
Сигналы могут быть периодическими и непериодическими. Непериодические сигналы делятся на: почти периодические и переходные. Почти периодическим называется сигнал, значения которого приближённо повторяются при добавлении к временному аргументу надлежащим образом выбранного числа - почти периода.
Периодический сигнал характеризуется спектром. Различают три вида спектра:
- комплексный комплексная функция дискретного аргумента, кратного целому числу значений частоты периодического сигнала U(t), представляющая собой значения коэффициентов комплексного ряда Фурье.
- амплитудный функция дискретного аргумента, представляющая собой модуль комплексного спектра периодического сигнала.
- фазовый функция дискретного аргумента, представляющая собой аргумент комплексного спектра периодического сигнала:
Периодический сигнал содержит ряд гармоник.
Гармоника
- гармонический сигнал с амплитудой и
начальной фазой, равными соответствующим
значениям амплитудного и фазового
спектра периодического сигнала при
некотором значении аргумента. Наличие
высших гармоник в спектре периодического
сигнала количественно описывается
коэффициентом гармоник, характеризующим
отличие формы данного периодического
сигнала от гармонической (синусоидальной).
,
Периодические сигналы бывают гармоническими, т.е. содержащими только одну гармонику, и полигармоническими, спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы являются полигармоническими.
Случайный сигнал это изменяющаяся во времени физическая величина, мгновенное значение которой является случайной величиной. Характеристики и параметры случайных сигналов, или, как еще говорят, процессов, рассмотрены отдельно.