Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры ПиПИИ.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
2.01 Mб
Скачать

44. Регистрация измерительной информации. Магнитооптические (мо) но­сители информации и измерительные преобразователи, используемые для за­писи и воспроизведения сигналов.

Процесс записи основан на МО эффектах, а запись основана на термомагнитных явлениях. Магнитооптический носитель информации содержит рабочий МО слой, который представляет собой аморфную магнитную пленку, способную терять намагниченность и коэрцитивную силу при нагреве до определенной температуры(~100-200 °) и обеспечивать в процессе воспроизведения достаточно большой магнитооптический эффект.

Способы записи:

1)В процессе записи предварительно намагниченный МО-слой локально размагничивается, нагреваясь от остросфокусированного луча лазера.

2)Запись происходит путем изменения направления предварительной намагниченности МО-слоя на противоположное. Для этого при локальном нагреве и остывании участка, когда его коэрцитивная сила еще мала, на него воздействуют магнитным полем обратного направления по отношению к полю предварительного намагничивания.(чаще всего используют)

3) запись на предварительно ненамагниченный МО-слой или на МО-слой со старой записью при одновременном ее стирании.

Эффект Керра (чаще используется) - Если луч поляризованного света направить на отражающую намагниченную поверхность, то плоскость поляризации отраженного луча изменяется в зависимости от направления и значения намагниченности отражающей поверхности. Соответственно изменяется световой поток, проходящий через анализатор и попадающий на светоприемник, т.е. намагниченная поверхность его модулирует. Отражающей намагниченной поверхностью в системах записи на МО-носителях является МО-слой, а источником света − тот же лазер, что используется для записи, но с уменьшенной мощностью излучения. Поверхностная плотность записи информации на МО-носителях достигает 106 бит/мм2.

45. Электрические информационные сигналы. Основные термины и определения. Классификация электрических информационных сигналов.

Сигналом называется материальный носитель информации, представляющий собой некоторый физический процесс, один из параметров которого функционально связан с измеряемой физической величиной.

Аналоговый сигнал  это сигнал, описываемый непрерывной или кусочно-непрерывной функцией Uа(t), причём как сама эта функция, так и её аргумент t могут принимать любые значения на заданных интервалах U(Umin; Umax) и t(tmin; tmax) .

Дискретный сигнал  это сигнал, изменяющийся дискретно во времени или по уровню.

Цифровые сигналы  квантованные по уровню и дискретные по времени сигналы которые описываются квантованными решётчатыми функциями (квантованными последовательностями).

По характеру изменения во времени сигналы делятся на постоянные, значения которых в течение времени не изменяются, и переменные, значения которые меняются во времени.

Переменные сигналы могут быть непрерывными во времени и импульсными. Непрерывным называется сигнал, параметры которого изменяются непрерывно. Импульсный сигнал  это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен.

По степени наличия априорной информации переменные измерительные сигналы делятся на детерминированные, квазидетерминированные и случайные.

Детерминированный сигнал - это сигнал, закон изменения которого известен, а модель не содержит неизвестных параметров. Мгновенные значения детерминированного сигнала известны в любой момент времени.

Квазидетерминированные сигналы - это сигналы с частично известным характером изменения во времени, т.е. с одним или несколькими неизвестными параметрами.

Детерминированные и квазидетерминированные сигналы делятся на элементарные, описываемые простейшими математическими формулами, и сложные.

Сигналы могут быть периодическими и непериодическими. Непериодические сигналы делятся на: почти периодические и переходные. Почти периодическим называется сигнал, значения которого приближённо повторяются при добавлении к временному аргументу надлежащим образом выбранного числа - почти периода.

Периодический сигнал характеризуется спектром. Различают три вида спектра:

- комплексный  комплексная функция дискретного аргумента, кратного целому числу значений частоты  периодического сигнала U(t), представляющая собой значения коэффициентов комплексного ряда Фурье.

- амплитудный  функция дискретного аргумента, представляющая собой модуль комплексного спектра периодического сигнала.

- фазовый  функция дискретного аргумента, представляющая собой аргумент комплексного спектра периодического сигнала:

Периодический сигнал содержит ряд гармоник.

Гармоника - гармонический сигнал с амплитудой и начальной фазой, равными соответствующим значениям амплитудного и фазового спектра периодического сигнала при некотором значении аргумента. Наличие высших гармоник в спектре периодического сигнала количественно описывается коэффициентом гармоник, характеризующим отличие формы данного периодического сигнала от гармонической (синусоидальной). ,

Периодические сигналы бывают гармоническими, т.е. содержащими только одну гармонику, и полигармоническими, спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы являются полигармоническими.

Случайный сигнал  это изменяющаяся во времени физическая величина, мгновенное значение которой является случайной величиной. Характеристики и параметры случайных сигналов, или, как еще говорят, процессов, рассмотрены отдельно.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]