
- •Содержание
- •3.2. Многослойный персептрон 34
- •12.1. Обоснование выбора темы и области применения разработки 142
- •12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы 144
- •12.3. Выводы 151
- •7. Работа с сетью Кохонена. 170
- •Введение
- •Глава 1. Введение в искусственные нейронные сети
- •1.1. Проблемы, решаемые в контексте инс
- •1.2. Краткий исторический обзор
- •1.3. Модель технического нейрона
- •Математическая модель нейрона:
- •1.4. Архитектура нейронной сети
- •1.5. Обучение нейронных сетей
- •1.6. Многослойные сети прямого распространения
- •1.6.1. Многослойный персептрон
- •1.6.3. Нерешенные проблемы
- •1.7. Самоорганизующиеся карты Кохонена
- •1.8. Модели теории адаптивного резонанса
- •1.9. Сеть Хопфилда
- •1.9.1 Ассоциативная память
- •1.9.2. Минимизация энергии
- •Глава 2. Основные функциональные возможности программ моделирования нейронных сетей
- •2.1. Формирование (создание) нейронной сети.
- •2.2. Обучение нейронной сети
- •2.3. Имитация функционирования (тестирование) обученной нейронной сети
- •Глава 3. Персептроны
- •3.1. Однослойный персептрон
- •3.2. Многослойный персептрон
- •3.2.1. Архитектура сети
- •3.2.2. Алгоритм обратного распространения
- •3.2.3. Модификации алгоритма обратного распространения и rprop-алгоритма
- •3.3. Применение многослойных персептронов
- •3.3.1. Решение конкретных задач
- •3.3.2. Естественные координаты
- •3.3.3. Репликативные нейронные сети
- •3.3.4. Практическое использование репликативных нейронных сетей
- •Глава 4. Сети Кохонена
- •4.1. Основной принцип работы сети Кохонена
- •4.2. Сходимость алгоритма самообучения
- •Глава 5. Сети радиальных базисных функций
- •5.1. Архитектура сетей
- •5.2. Интерполяция при помощи центральных функций
- •5.3. Интерполяция с помощью центральных функций и полиномов
- •5.4. Аппроксимация с помощью центральных функций
- •5.5. Вариационное исчисление для решения проблемы аппроксимации с помощью rbf-сетей
- •5.6. Расширение на случай многих функций
- •5.7. Расширение линейной частью
- •5.9. Итеративное дополнительное обучение rbf- и hbf-сетей
- •5.10. Выбор центров и радиусов в rbf-сетях
- •5.10.1. Итеративный алгоритм кластеризации
- •5.10.2. Выбор параметра
- •5.10.3. Расчет выходной весовой матрицы c
- •Глава 6. Нейронные сети и генетические алгоритмы
- •6.1. Эволюция как способ оптимизации.
- •6.2 Генетические алгоритмы
- •6.3. Нейро-генетические способы
- •Глава 7. Система моделирования нейронных сетей Trajan 2.0
- •7.1. Создание сети и обучающей последовательности
- •7.1.1. Создание сети
- •7.1.2. Количество и размерность слоев в сети
- •7.1.3. Создание обучающей последовательности
- •7.1.4. Редактирование набора образцов
- •7.2. Обучение сети
- •7.2.1. Типы сетей
- •7.2.2. Создание обучающей и проверочной последовательностей образов
- •7.2.3. Создание сокращенной обучающей последовательности
- •7.2.4. Визуализация процесса обучения
- •7.2.5. Оптимизация процесса обучения
- •7.2.6. Обучение с перекрестной проверкой
- •7.3. Работа с сетью
- •7.3.1. Возможности сети по работе с образцами
- •7.3.2. Интерпретация классификации
- •7.3.3. Работа с сетью Кохонена.
- •7.4. Генетический алгоритм выбора входных атрибутов
- •7.5. Сохранение результатов работы
- •Глава 8. Экспериментальное исследование эффективности применения нейронных сетей
- •Глава 9. Методика представления, архивирования и обработки обучающей последовательности для алгоритмов обучения нейросетей
- •Глава 10. Возможности использования среды www для дистанционного обучения
- •Глава 11. Создание программ для среды www
- •Глава 12. Технико-экономический анализ и обоснование разработки адаптивного обучающего и контролирующего курсов по нейросетям
- •12.1. Обоснование выбора темы и области применения разработки
- •12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы
- •12.2.1. Расчет затрат на разрабоку и изготовление предлагаемого курса
- •12.2.2. Расчет экономического эффекта от создания и использования обучающего курса
- •12.3. Выводы
- •Глава 13. Обучение контролирующей системы
- •Глава 14. Дистанционный обучающий и контролирующий курс
- •Содержание обучающего курса
- •Заключение
- •Литература
- •Приложение 1. Лабораторная работа «Кластеризация образов с помощью системы моделирования нейросетей Trajan 2.1»
- •1. Цель работы
- •2. Знания и умения, формируемые данной лабораторной работой
- •3. Постановка задачи
- •4. Принципиальные особенности сетей Кохонена.
- •5. Создание сети Кохонена
- •6. Обучение сети Кохонена
- •7. Работа с сетью Кохонена.
- •8. Задание
- •9. Контрольные вопросы
- •Приложение 2. Вопросы контролирующего курса.
- •Приложение 3. Обучающие последовательности для контролирующей системы
- •Приложение 4. Листинг контролирующей программы.
1.6. Многослойные сети прямого распространения
Стандартная L-слойная сеть прямого распространения состоит из слоя входных узлов (будем придерживаться утверждения, что он не включается в сеть в качестве самостоятельного слоя), (L-1) скрытых слоев и выходного слоя, соединенных последовательно в прямом направлении и не содержащих связей между элементами внутри слоя и обратных связей между слоями. На рис. 4 приведена структура трехслойной сети.
Рис. 6. Типовая архитектура трехслойной сети прямого распространения.
1.6.1. Многослойный персептрон
Наиболее популярный класс многослойных сетей прямого распространения образуют многослойные персептроны, в которых каждый вычислительный элемент использует пороговую или сигмоидальную функцию активации. Многослойный персептрон может формировать сколь угодно сложные границы принятия решения и реализовывать произвольные булевы функции. Разработка алгоритма обратного распространения для определения весов в многослойном персептроне сделала эти сети наиболее популярными у исследователей и пользователей нейронных сетей. Геометрическая интерпретация объясняет роль элементов скрытых слоев (используется пороговая активационная функция).
1.6.2. RBF-сети
Сети, использующие радиальные базисные функции (RBF-сети), являются частным случаем двухслойной сети прямого распространения. Каждый элемент скрытого слоя использует в качестве активационной функции радиальную базисную функцию типа гауссовой. Радиальная базисная функция (функция ядра) центрируется в точке, которая определяется весовым вектором, связанным с нейроном. Как позиция, так и ширина функции ядра должны быть обучены по выборочным образцам. Обычно ядер гораздо меньше, чем обучающих примеров. Каждый выходной элемент вычисляет линейную комбинацию этих радиальных базисных функций. С точки зрения задачи аппроксимации скрытые элементы формируют совокупность функций, которые образуют базисную систему для представления входных примеров в построенном на ней пространстве.
Существуют различные алгоритмы обучения RBF-сетей. Основной алгоритм использует двушаговую стратегию обучения, или смешанное обучение. Он оценивает позицию и ширину ядра с использованием алгоритма кластеризации "без учителя", а затем алгоритм минимизации среднеквадратической ошибки "с учителем" для определения весов связей между скрытым и выходным слоями. Поскольку выходные элементы линейны, применяется неитерационный алгоритм. После получения этого начального приближения используется градиентный спуск для уточнения параметров сети.
Этот смешанный алгоритм обучения RBF-сети сходится гораздо быстрее, чем алгоритм обратного распространения для обучения многослойных персептронов. Однако RBF-сеть часто содержит слишком большое число скрытых элементов. Это влечет более медленное функционирование RBF-сети, чем многослойного персептрона. Эффективность (ошибка в зависимости от размера сети) RBF-сети и многослойного персептрона зависят от решаемой задачи.