
- •Содержание
- •3.2. Многослойный персептрон 34
- •12.1. Обоснование выбора темы и области применения разработки 142
- •12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы 144
- •12.3. Выводы 151
- •7. Работа с сетью Кохонена. 170
- •Введение
- •Глава 1. Введение в искусственные нейронные сети
- •1.1. Проблемы, решаемые в контексте инс
- •1.2. Краткий исторический обзор
- •1.3. Модель технического нейрона
- •Математическая модель нейрона:
- •1.4. Архитектура нейронной сети
- •1.5. Обучение нейронных сетей
- •1.6. Многослойные сети прямого распространения
- •1.6.1. Многослойный персептрон
- •1.6.3. Нерешенные проблемы
- •1.7. Самоорганизующиеся карты Кохонена
- •1.8. Модели теории адаптивного резонанса
- •1.9. Сеть Хопфилда
- •1.9.1 Ассоциативная память
- •1.9.2. Минимизация энергии
- •Глава 2. Основные функциональные возможности программ моделирования нейронных сетей
- •2.1. Формирование (создание) нейронной сети.
- •2.2. Обучение нейронной сети
- •2.3. Имитация функционирования (тестирование) обученной нейронной сети
- •Глава 3. Персептроны
- •3.1. Однослойный персептрон
- •3.2. Многослойный персептрон
- •3.2.1. Архитектура сети
- •3.2.2. Алгоритм обратного распространения
- •3.2.3. Модификации алгоритма обратного распространения и rprop-алгоритма
- •3.3. Применение многослойных персептронов
- •3.3.1. Решение конкретных задач
- •3.3.2. Естественные координаты
- •3.3.3. Репликативные нейронные сети
- •3.3.4. Практическое использование репликативных нейронных сетей
- •Глава 4. Сети Кохонена
- •4.1. Основной принцип работы сети Кохонена
- •4.2. Сходимость алгоритма самообучения
- •Глава 5. Сети радиальных базисных функций
- •5.1. Архитектура сетей
- •5.2. Интерполяция при помощи центральных функций
- •5.3. Интерполяция с помощью центральных функций и полиномов
- •5.4. Аппроксимация с помощью центральных функций
- •5.5. Вариационное исчисление для решения проблемы аппроксимации с помощью rbf-сетей
- •5.6. Расширение на случай многих функций
- •5.7. Расширение линейной частью
- •5.9. Итеративное дополнительное обучение rbf- и hbf-сетей
- •5.10. Выбор центров и радиусов в rbf-сетях
- •5.10.1. Итеративный алгоритм кластеризации
- •5.10.2. Выбор параметра
- •5.10.3. Расчет выходной весовой матрицы c
- •Глава 6. Нейронные сети и генетические алгоритмы
- •6.1. Эволюция как способ оптимизации.
- •6.2 Генетические алгоритмы
- •6.3. Нейро-генетические способы
- •Глава 7. Система моделирования нейронных сетей Trajan 2.0
- •7.1. Создание сети и обучающей последовательности
- •7.1.1. Создание сети
- •7.1.2. Количество и размерность слоев в сети
- •7.1.3. Создание обучающей последовательности
- •7.1.4. Редактирование набора образцов
- •7.2. Обучение сети
- •7.2.1. Типы сетей
- •7.2.2. Создание обучающей и проверочной последовательностей образов
- •7.2.3. Создание сокращенной обучающей последовательности
- •7.2.4. Визуализация процесса обучения
- •7.2.5. Оптимизация процесса обучения
- •7.2.6. Обучение с перекрестной проверкой
- •7.3. Работа с сетью
- •7.3.1. Возможности сети по работе с образцами
- •7.3.2. Интерпретация классификации
- •7.3.3. Работа с сетью Кохонена.
- •7.4. Генетический алгоритм выбора входных атрибутов
- •7.5. Сохранение результатов работы
- •Глава 8. Экспериментальное исследование эффективности применения нейронных сетей
- •Глава 9. Методика представления, архивирования и обработки обучающей последовательности для алгоритмов обучения нейросетей
- •Глава 10. Возможности использования среды www для дистанционного обучения
- •Глава 11. Создание программ для среды www
- •Глава 12. Технико-экономический анализ и обоснование разработки адаптивного обучающего и контролирующего курсов по нейросетям
- •12.1. Обоснование выбора темы и области применения разработки
- •12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы
- •12.2.1. Расчет затрат на разрабоку и изготовление предлагаемого курса
- •12.2.2. Расчет экономического эффекта от создания и использования обучающего курса
- •12.3. Выводы
- •Глава 13. Обучение контролирующей системы
- •Глава 14. Дистанционный обучающий и контролирующий курс
- •Содержание обучающего курса
- •Заключение
- •Литература
- •Приложение 1. Лабораторная работа «Кластеризация образов с помощью системы моделирования нейросетей Trajan 2.1»
- •1. Цель работы
- •2. Знания и умения, формируемые данной лабораторной работой
- •3. Постановка задачи
- •4. Принципиальные особенности сетей Кохонена.
- •5. Создание сети Кохонена
- •6. Обучение сети Кохонена
- •7. Работа с сетью Кохонена.
- •8. Задание
- •9. Контрольные вопросы
- •Приложение 2. Вопросы контролирующего курса.
- •Приложение 3. Обучающие последовательности для контролирующей системы
- •Приложение 4. Листинг контролирующей программы.
1.2. Краткий исторический обзор
Исследования в области ИНС пережили три периода активизации. Первый пик в 40-х годах обусловлен пионерской работой МакКаллока и Питтса. Считается, что теория нейронных сетей, как научное направление, впервые была обозначена в классической работе МакКаллока и Питтса 1943 г., в которой утверждалось, что, в принципе, любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. Второй возник в 60-х благодаря теореме сходимости персептрона Розенблатта и работе Минского и Пейперта, указавшей ограниченные возможности простейшего персептрона. Результаты Минского и Пейперта погасили энтузиазм большинства исследователей, особенно тех, кто работал в области вычислительных наук. Возникшее в исследованиях по нейронным сетям затишье продлилось почти 20 лет. С начала 80-х годов ИНС вновь привлекли интерес исследователей, что связано с энергетическим подходом Хопфилда и алгоритмом обратного распространения для обучения многослойного персептрона (многослойные сети прямого распространения), впервые предложенного Вербосом и независимо разработанного рядом других авторов. Алгоритм получил известность благодаря Румельхарту в 1986году Андерсон и Розенфельд подготовили подробную историческую справку о развитии ИНС.
1.3. Модель технического нейрона
МакКаллок и Питтс предложили использовать бинарный пороговый элемент в качестве модели искусственного нейрона. Этот математический нейрон вычисляет взвешенную сумму n входных сигналов xj, j = 1, 2... n, и формирует на выходе сигнал величины 1, если эта сумма превышает определенный порог u, и 0 - в противном случае.
Часто удобно рассматривать u как весовой коэффициент, связанный с постоянным входом x0 = 1. Положительные веса соответствуют возбуждающим связям, а отрицательные - тормозным. МакКаллок и Питтс доказали, что при соответствующим образом подобранных весах совокупность параллельно функционирующих нейронов подобного типа способна выполнять универсальные вычисления. Здесь наблюдается определенная аналогия с биологическим нейроном: передачу сигнала и взаимосвязи имитируют аксоны и дендриты, веса связей соответствуют синапсам, а пороговая функция отражает активность сомы.
Нейрон (рис. 1) - это составная часть нейронной сети. Он состоит из элементов трех типов. Элементы нейрона - умножители (синапсы), сумматор и нелинейный преобразователь. Синапсы осуществляют связь между нейронами, умножают входной сигнал на число, характеризующее силу связи, - вес синапса. Сумматор выполняет сложение сигналов, поступающих по синаптическим связям от других нейронов, и внешних входных сигналов. Нелинейный преобразователь реализует нелинейную функцию одного аргумента - выхода сумматора. Эта функция называется "функция активации" или "передаточная функция" нейрона. Нейрон в целом реализует скалярную функцию векторного аргумента.
Рис. 1. Схема нейрона
Математическая модель нейрона:
N
S = wi xi (1)
i=1
y = f (S) (2)
где
wi - вес синапса (weight), (i=1,2...N);
S - результат суммирования (sum);
xi - компонента входного вектора (входной сигнал), (i=1,2,...N);
y - выходной сигнал нейрона;
N - число входов нейрона;
f - нелинейное преобразование (функция активации).
В общем случае входной сигнал, весовые коэффициенты и значения смещения могут принимать действительные значения. Выход (y) определяется видом функции активации и может быть как действительным, так и целым. Во многих практических задачах входы, веса и смещения могут принимать лишь некоторые фиксированные значения.
Синаптические связи с положительными весами называют возбуждающими, с отрицательными весами - тормозящими.
Описанный вычислительный элемент можно считать упрощенной математической моделью биологических нейронов - клеток, из которых состоит нервная система человека и животных.
Чтобы подчеркнуть различие нейронов биологических и математических, вторые иногда называют нейроноподобными элементами или формальными нейронами.
На входной сигнал (s) нелинейный преобразователь отвечает выходным сигналом f(s,p), который представляет собой выход нейрона (y). Здесь p - параметр или набор параметров, от которых зависит функционирование преобразователя. Пример передаточной функции представлен на рис. 2.
Рис. 2. Сигмоидальная передаточная функция