
- •Содержание
- •3.2. Многослойный персептрон 34
- •12.1. Обоснование выбора темы и области применения разработки 142
- •12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы 144
- •12.3. Выводы 151
- •7. Работа с сетью Кохонена. 170
- •Введение
- •Глава 1. Введение в искусственные нейронные сети
- •1.1. Проблемы, решаемые в контексте инс
- •1.2. Краткий исторический обзор
- •1.3. Модель технического нейрона
- •Математическая модель нейрона:
- •1.4. Архитектура нейронной сети
- •1.5. Обучение нейронных сетей
- •1.6. Многослойные сети прямого распространения
- •1.6.1. Многослойный персептрон
- •1.6.3. Нерешенные проблемы
- •1.7. Самоорганизующиеся карты Кохонена
- •1.8. Модели теории адаптивного резонанса
- •1.9. Сеть Хопфилда
- •1.9.1 Ассоциативная память
- •1.9.2. Минимизация энергии
- •Глава 2. Основные функциональные возможности программ моделирования нейронных сетей
- •2.1. Формирование (создание) нейронной сети.
- •2.2. Обучение нейронной сети
- •2.3. Имитация функционирования (тестирование) обученной нейронной сети
- •Глава 3. Персептроны
- •3.1. Однослойный персептрон
- •3.2. Многослойный персептрон
- •3.2.1. Архитектура сети
- •3.2.2. Алгоритм обратного распространения
- •3.2.3. Модификации алгоритма обратного распространения и rprop-алгоритма
- •3.3. Применение многослойных персептронов
- •3.3.1. Решение конкретных задач
- •3.3.2. Естественные координаты
- •3.3.3. Репликативные нейронные сети
- •3.3.4. Практическое использование репликативных нейронных сетей
- •Глава 4. Сети Кохонена
- •4.1. Основной принцип работы сети Кохонена
- •4.2. Сходимость алгоритма самообучения
- •Глава 5. Сети радиальных базисных функций
- •5.1. Архитектура сетей
- •5.2. Интерполяция при помощи центральных функций
- •5.3. Интерполяция с помощью центральных функций и полиномов
- •5.4. Аппроксимация с помощью центральных функций
- •5.5. Вариационное исчисление для решения проблемы аппроксимации с помощью rbf-сетей
- •5.6. Расширение на случай многих функций
- •5.7. Расширение линейной частью
- •5.9. Итеративное дополнительное обучение rbf- и hbf-сетей
- •5.10. Выбор центров и радиусов в rbf-сетях
- •5.10.1. Итеративный алгоритм кластеризации
- •5.10.2. Выбор параметра
- •5.10.3. Расчет выходной весовой матрицы c
- •Глава 6. Нейронные сети и генетические алгоритмы
- •6.1. Эволюция как способ оптимизации.
- •6.2 Генетические алгоритмы
- •6.3. Нейро-генетические способы
- •Глава 7. Система моделирования нейронных сетей Trajan 2.0
- •7.1. Создание сети и обучающей последовательности
- •7.1.1. Создание сети
- •7.1.2. Количество и размерность слоев в сети
- •7.1.3. Создание обучающей последовательности
- •7.1.4. Редактирование набора образцов
- •7.2. Обучение сети
- •7.2.1. Типы сетей
- •7.2.2. Создание обучающей и проверочной последовательностей образов
- •7.2.3. Создание сокращенной обучающей последовательности
- •7.2.4. Визуализация процесса обучения
- •7.2.5. Оптимизация процесса обучения
- •7.2.6. Обучение с перекрестной проверкой
- •7.3. Работа с сетью
- •7.3.1. Возможности сети по работе с образцами
- •7.3.2. Интерпретация классификации
- •7.3.3. Работа с сетью Кохонена.
- •7.4. Генетический алгоритм выбора входных атрибутов
- •7.5. Сохранение результатов работы
- •Глава 8. Экспериментальное исследование эффективности применения нейронных сетей
- •Глава 9. Методика представления, архивирования и обработки обучающей последовательности для алгоритмов обучения нейросетей
- •Глава 10. Возможности использования среды www для дистанционного обучения
- •Глава 11. Создание программ для среды www
- •Глава 12. Технико-экономический анализ и обоснование разработки адаптивного обучающего и контролирующего курсов по нейросетям
- •12.1. Обоснование выбора темы и области применения разработки
- •12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы
- •12.2.1. Расчет затрат на разрабоку и изготовление предлагаемого курса
- •12.2.2. Расчет экономического эффекта от создания и использования обучающего курса
- •12.3. Выводы
- •Глава 13. Обучение контролирующей системы
- •Глава 14. Дистанционный обучающий и контролирующий курс
- •Содержание обучающего курса
- •Заключение
- •Литература
- •Приложение 1. Лабораторная работа «Кластеризация образов с помощью системы моделирования нейросетей Trajan 2.1»
- •1. Цель работы
- •2. Знания и умения, формируемые данной лабораторной работой
- •3. Постановка задачи
- •4. Принципиальные особенности сетей Кохонена.
- •5. Создание сети Кохонена
- •6. Обучение сети Кохонена
- •7. Работа с сетью Кохонена.
- •8. Задание
- •9. Контрольные вопросы
- •Приложение 2. Вопросы контролирующего курса.
- •Приложение 3. Обучающие последовательности для контролирующей системы
- •Приложение 4. Листинг контролирующей программы.
Глава 1. Введение в искусственные нейронные сети
Интеллектуальные системы на основе искусственных нейронных сетей (ИНС) позволяют с успехом решать проблемы распознавания образов, выполнения прогнозов, оптимизации, ассоциативной памяти и управления. Известны и иные, более традиционные подходы к решению этих проблем, однако они не обладают необходимой гибкостью за пределами ограниченных условий. ИНС дают многообещающие альтернативные решения, и многие приложения выигрывают от их использования.
Длительный период эволюции придал мозгу человека много качеств, которые отсутствуют как в машинах с архитектурой фон Неймана, так и в современных параллельных компьютерах. К ним относятся:
• массовый параллелизм,
• распределенное представление информации и вычисления,
• способность к обучению и способность к обобщению,
• адаптивность,
• свойство контекстуальной обработки информации,
• толерантность к ошибкам,
• низкое энергопотребление.
Можно предположить, что приборы, построенные на тех же принципах, что и биологические нейроны, будут обладать перечисленными характеристиками.
Современные цифровые вычислительные машины превосходят человека по способности производить числовые и символьные вычисления. Однако человек может без усилий решать сложные задачи восприятия внешних данных (например, узнавание человека в толпе только по его промелькнувшему лицу) с высочайшей скоростью и точностью, а мощный современный компьютер не всегда способен это сделать.
Подобно биологической нейронной системе ИНС является вычислительной системой с огромным числом параллельно функционирующих простых процессоров с множеством связей. Модели ИНС в некоторой степени воспроизводят "организационные" принципы, свойственные мозгу человека. Моделирование биологической нейронной системы с использованием ИНС может также способствовать лучшему пониманию биологических функций.
Глубокое изучение ИНС требует знания нейрофизиологии, науки о познании, психологии, физики (статистической механики), теории управления, теории вычислений, проблем искусственного интеллекта, статистики/математики, распознавания образов, компьютерного зрения, параллельных вычислений и аппаратных средств (цифровых/аналоговых/VLSI/оптических). С другой стороны, ИНС также стимулируют эти дисциплины, обеспечивая их новыми инструментами и представлениями. Этот симбиоз жизненно необходим для исследований по нейронным сетям.
1.1. Проблемы, решаемые в контексте инс
Представим некоторые проблемы, решаемые в контексте ИНС и представляющие интерес для ученых и инженеров.
Классификация образов. Задача состоит в указании принадлежности входного образа (например, речевого сигнала или рукописного символа), представленного вектором признаков, одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание речи, классификация сигнала электрокардиограммы, классификация клеток крови.
Кластеризация/категоризация. При решении задачи кластеризации, которая известна также как классификация образов "без учителя", отсутствует обучающая выборка с метками классов. Алгоритм кластеризации основан на подобии образов и размещает близкие образы в один кластер. Известны случаи применения кластеризации для извлечения знаний, сжатия данных и исследования свойств данных.
Аппроксимация функций. Предположим, что имеется обучающая выборка ((x1,y1), (x2,y2)..., (xn,yn)) (пары данных вход-выход), которая генерируется неизвестной функцией (x), искаженной шумом. Задача аппроксимации состоит в нахождении оценки неизвестной функции (x). Аппроксимация функций необходима при решении многочисленных инженерных и научных задач моделирования.
Предсказание/прогноз. Пусть заданы n дискретных отсчетов {y(t1), y(t2)..., y(tn)} в последовательные моменты времени t1, t2,..., tn . Задача состоит в предсказании значения y(tn+1) в некоторый будущий момент времени tn+1. Предсказание/прогноз имеют значительное влияние на принятие решений в бизнесе, науке и технике. Предсказание цен на фондовой бирже и прогноз погоды являются типичными приложениями техники предсказания/прогноза.
Оптимизация. Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей алгоритма оптимизации является нахождение такого решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию. Задача коммивояжера, относящаяся к классу NP-полных, является классическим примером задачи оптимизации.
Память, адресуемая по содержанию. В модели вычислений фон Неймана обращение к памяти доступно только посредством адреса, который не зависит от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найдена совершенно иная информация. Ассоциативная память, или память, адресуемая по содержанию, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному входу или искаженному содержанию. Ассоциативная память чрезвычайно желательна при создании мультимедийных информационных баз данных.
Управление. Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) является входным управляющим воздействием, а y(t) - выходом системы в момент времени t. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(t), при котором система следует по желаемой траектории, диктуемой эталонной моделью. Примером является оптимальное управление двигателем.