
- •Содержание
- •3.2. Многослойный персептрон 34
- •12.1. Обоснование выбора темы и области применения разработки 142
- •12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы 144
- •12.3. Выводы 151
- •7. Работа с сетью Кохонена. 170
- •Введение
- •Глава 1. Введение в искусственные нейронные сети
- •1.1. Проблемы, решаемые в контексте инс
- •1.2. Краткий исторический обзор
- •1.3. Модель технического нейрона
- •Математическая модель нейрона:
- •1.4. Архитектура нейронной сети
- •1.5. Обучение нейронных сетей
- •1.6. Многослойные сети прямого распространения
- •1.6.1. Многослойный персептрон
- •1.6.3. Нерешенные проблемы
- •1.7. Самоорганизующиеся карты Кохонена
- •1.8. Модели теории адаптивного резонанса
- •1.9. Сеть Хопфилда
- •1.9.1 Ассоциативная память
- •1.9.2. Минимизация энергии
- •Глава 2. Основные функциональные возможности программ моделирования нейронных сетей
- •2.1. Формирование (создание) нейронной сети.
- •2.2. Обучение нейронной сети
- •2.3. Имитация функционирования (тестирование) обученной нейронной сети
- •Глава 3. Персептроны
- •3.1. Однослойный персептрон
- •3.2. Многослойный персептрон
- •3.2.1. Архитектура сети
- •3.2.2. Алгоритм обратного распространения
- •3.2.3. Модификации алгоритма обратного распространения и rprop-алгоритма
- •3.3. Применение многослойных персептронов
- •3.3.1. Решение конкретных задач
- •3.3.2. Естественные координаты
- •3.3.3. Репликативные нейронные сети
- •3.3.4. Практическое использование репликативных нейронных сетей
- •Глава 4. Сети Кохонена
- •4.1. Основной принцип работы сети Кохонена
- •4.2. Сходимость алгоритма самообучения
- •Глава 5. Сети радиальных базисных функций
- •5.1. Архитектура сетей
- •5.2. Интерполяция при помощи центральных функций
- •5.3. Интерполяция с помощью центральных функций и полиномов
- •5.4. Аппроксимация с помощью центральных функций
- •5.5. Вариационное исчисление для решения проблемы аппроксимации с помощью rbf-сетей
- •5.6. Расширение на случай многих функций
- •5.7. Расширение линейной частью
- •5.9. Итеративное дополнительное обучение rbf- и hbf-сетей
- •5.10. Выбор центров и радиусов в rbf-сетях
- •5.10.1. Итеративный алгоритм кластеризации
- •5.10.2. Выбор параметра
- •5.10.3. Расчет выходной весовой матрицы c
- •Глава 6. Нейронные сети и генетические алгоритмы
- •6.1. Эволюция как способ оптимизации.
- •6.2 Генетические алгоритмы
- •6.3. Нейро-генетические способы
- •Глава 7. Система моделирования нейронных сетей Trajan 2.0
- •7.1. Создание сети и обучающей последовательности
- •7.1.1. Создание сети
- •7.1.2. Количество и размерность слоев в сети
- •7.1.3. Создание обучающей последовательности
- •7.1.4. Редактирование набора образцов
- •7.2. Обучение сети
- •7.2.1. Типы сетей
- •7.2.2. Создание обучающей и проверочной последовательностей образов
- •7.2.3. Создание сокращенной обучающей последовательности
- •7.2.4. Визуализация процесса обучения
- •7.2.5. Оптимизация процесса обучения
- •7.2.6. Обучение с перекрестной проверкой
- •7.3. Работа с сетью
- •7.3.1. Возможности сети по работе с образцами
- •7.3.2. Интерпретация классификации
- •7.3.3. Работа с сетью Кохонена.
- •7.4. Генетический алгоритм выбора входных атрибутов
- •7.5. Сохранение результатов работы
- •Глава 8. Экспериментальное исследование эффективности применения нейронных сетей
- •Глава 9. Методика представления, архивирования и обработки обучающей последовательности для алгоритмов обучения нейросетей
- •Глава 10. Возможности использования среды www для дистанционного обучения
- •Глава 11. Создание программ для среды www
- •Глава 12. Технико-экономический анализ и обоснование разработки адаптивного обучающего и контролирующего курсов по нейросетям
- •12.1. Обоснование выбора темы и области применения разработки
- •12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы
- •12.2.1. Расчет затрат на разрабоку и изготовление предлагаемого курса
- •12.2.2. Расчет экономического эффекта от создания и использования обучающего курса
- •12.3. Выводы
- •Глава 13. Обучение контролирующей системы
- •Глава 14. Дистанционный обучающий и контролирующий курс
- •Содержание обучающего курса
- •Заключение
- •Литература
- •Приложение 1. Лабораторная работа «Кластеризация образов с помощью системы моделирования нейросетей Trajan 2.1»
- •1. Цель работы
- •2. Знания и умения, формируемые данной лабораторной работой
- •3. Постановка задачи
- •4. Принципиальные особенности сетей Кохонена.
- •5. Создание сети Кохонена
- •6. Обучение сети Кохонена
- •7. Работа с сетью Кохонена.
- •8. Задание
- •9. Контрольные вопросы
- •Приложение 2. Вопросы контролирующего курса.
- •Приложение 3. Обучающие последовательности для контролирующей системы
- •Приложение 4. Листинг контролирующей программы.
12.1. Обоснование выбора темы и области применения разработки 142
12.2. Оценка ожидаемой экономической целесообразности разработки, изготовления и использования проектируемой системы 144
12.2.1. Расчет затрат на разрабоку и изготовление предлагаемого курса 145
12.2.2. Расчет экономического эффекта от создания и использования обучающего курса 147
12.3. Выводы 151
Глава 13. Обучение контролирующей системы 152
Глава 14. Дистанционный обучающий и контролирующий курс 155
Заключение 160
Литература 162
Приложение 1. Лабораторная работа «Кластеризация образов с помощью системы моделирования нейросетей Trajan 2.1» 164
1. Цель работы 164
2. Знания и умения, формируемые данной лабораторной работой 164
3. Постановка задачи 164
4. Принципиальные особенности сетей Кохонена. 165
5. Создание сети Кохонена 166
6. Обучение сети Кохонена 167
7. Работа с сетью Кохонена. 170
8. Задание 174
9. Контрольные вопросы 174
Приложение 2. Вопросы контролирующего курса. 175
Приложение 3. Обучающие последовательности для контролирующей системы 178
Приложение 4. Листинг контролирующей программы. 182
Введение
Сегодня информация является важной частью повседневной жизни. Появляется все больше различных технологий для обработки, хранения и распространения информации, и главную роль в этом процессе играют компьютерные технологии. Одной из неотъемлемых частей существования человечества является образование: передача накопленных знаний и навыков, то есть передача информации.
В последнее время активно развиваются такие методы обучения как заочное, дистанционное и самостоятельное обучение. Широкое внедрение сети Интернет во все аспекты информационных технологий оказало влияние и на организацию процесса обучения. Сейчас очень популярны компьютерные курсы, представляющие собой электронные учебники и предполагающие самостоятельное изучение. Им на смену приходит обучение с помощью Интернет, предлагающее интерактивное взаимодействие студентов и преподавателя.
Таким образом, появляется необходимость в разработке систем дистанционного обучения и автоматического контроля знаний.
В процессе образования очень важным является взаимодействие преподавателя и ученика (студента). Часто тонкие нюансы передаваемых знаний можно объяснить и уловить только при непосредственном общении. Также преподавателю необходимо понимать насколько хорошо студент понимает, усваивает материал. Такое общение зачастую основано на постановке вопросов и получении ответов. Важным является не только адекватное, понятное объяснение материала, но и контроль знаний студентов, выставление оценки, которая несет также и воспитательный характер. И если в области создания дистанционных учебных курсов уже есть разработки, то на этапе контроля знаний таких разработок пока очень мало. Традиционные методики дистанционного контроля знаний основаны на обыкновенном подсчете правильных ответов, а это не всегда верно отражает знания студента. Следовательно, при автоматизации обучения необходимо разработать систему, наиболее адекватно отражающую характеристики преподавателя в проставлении оценок.
Современные технологии Интернет позволяют доставить информацию не только в виде текста (с иллюстрациями и таблицами), но позволяют передавать исполняемые модули, а также мультимедиа-информацию (аудио- и видеофрагменты). Все это позволяет разрабатывать обучающие системы, мало уступающие традиционному обучению с использованием лекций и семинаров.
Для проведения эфективного заочного обучения с помощью Интернет необходимо получить формализованную модель преподавателя. Надо построить адекватную модель взаимодействия преподавателя с учеником, что позволит значительно повысить корректность контроля знаний при дистанционном обучении и приблизить ее к очной форме обучения. Вполне приемлемым подходом к этой проблеме является анализ вопросов и выставленных оценок, т.е. фактически – решение задачи аппроксимации функции взаимодействия. Для решения подобных задач уже весьма давно применяются нейронные сети.
Данный дипломный проект является частью кафедрального проекта по автоматизации обучения и посвящен созданию адаптивного обучающего и контролирующего курсов по нейронным сетям. В качестве инструмента построения обучающей системы в проекте используются нейронные сети. Готовый учебный комплекс предназначен для проведения дистанционного обучения студентов с использованием сети Интернет.
Глава 1 посвящена введению в нейронные сети. В главе 2 проведен обзор возможностей программ моделирования нейронных сетей. Главы 3-5 содержат детальное описание определенных видов нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. В главе 6 рассматривается генетический алгоритм и его применение для оптимизации нейросетей. Глава 7 содержит описание возможностей системы моделирования нейронных сетей Trajan 2.0 и рекомендации по ее применению. Результаты экспериментального исселдования возможности применения нейросетей для контроля знаний приведены в главе 8, а глава 9 содержит методику обучающей последовательности. В главах 10-11 приведены возможности использования среды WWW в дистанционном обучении, создания программ для нее и примеры программ: демонстрация работы сети Кохонена и программа дистанционного контроля знаний, использующая нейросеть. В главе 12 проведен технико-экономический анализ и обоснование разработки адаптивного обучающего и контролирующего курсов по нейронным сетям. В главе 13 представлена методика обучения контролирующей системы на основе нейросети и в главе 14 приведено описание работы созданного комплекса дистанционного обучения.