
- •1. Развитие представлений о природе света.
- •2. Понятие о когерентности электромагнитных волн.
- •3. Интерференция света. Условие интерферентности волн.
- •4. Методы наблюдения интерференции света. Метод Юнга.
- •6. Расчет интерференциоии от 2-х источников света
- •5. Методы наблюдения интерференции света. Зеркала Френеля.
- •7. Интерференция в тонких пленках.
- •8. Ннтерференционные приборы и их применение.
- •9. Принцип Гюйгенса-Френеля.
- •10. Метод зон Френеля.
- •11. Явление дифракции. Дифракция Френеля на круглом отверстии.
- •Дифракция френеля на к руглых отверстиях
- •12. Явление дифракции. Дифракция Френеля на непрозрачном диске.
- •14. Дифракционная решетка. Главные и дополнительные максимумы и минимумы.
- •15. Расчет формулы дифракционной решетки
- •16. Применение дифракционной решетки. Разрешающая способность.
- •Применение явлений д-ии света
- •17. Дифракция рентгеновских лучей.
- •18 .Основы голограмм.
- •19. Дисперсия света.
- •33. Квантовая теория Планка. Формула Планка.
- •20. Электронная теория дисперсии света.
- •21. Поглощение света. Закон Бугера.
- •В прозрачных изотропных средах и в кристаллах куб. Системы может возникать двойной луч преломления под влиянием внеш. Воздейс–й, в частности это происходит при мех. Дифор. Тв. Тел.
- •27. Вращение плоскости поляризации. Эффект Фарадея.
- •28. Тепловое излучение и его характеристики.
- •29. Закон Кирхгофа для равновесного излучения.
- •30 Абсолютно черное тело. Закон Стефана-Больцмана.
- •72. Ядерные реакции и законы сохранения.
- •31. Абсолютно черное тело. Закон смещения Вина.
- •32. Абсолютно черное тело. Формула Релея-Джинса.
- •34. Внешний фотоэффект и его законы.
- •35. Уравнение Эйнштейна для внешнего фотоэффекта.
- •36. Модель атома Резерфорда и ее недостатки.
- •37. Закономерности в спектре излучения атома водорода.
- •38. Постулаты Бора. Модель атома Бора.
- •39. Корпускулярно-волновой дуализм свойств вещества.
- •44. Уравнение Шредингера для стационарных состояний.
- •40. Волны де Бройля и их свойства.
- •41. Соотношение неопределенности Гейзенберга.
- •42. Волновая функция и её статический смысл.
- •43. Общее уравнение Шредингера нерелятивистской квантовой механики
- •45. Прохождение частицы через потенциальный барьер.
- •46. Решение уравнения Шредингера для водородоподобных атомов
- •47. Квантовые числа, их физический смысл.
- •49. Спин электрон. Спиновое квантовое число.
- •48. Пространственное распределение электрона в атоме водорода.
- •50. Принцип Паули. Распределение электронов в атоме по состояниям.
- •55. Спонтанное и вынужденное излучение фотонов.
- •51. Периодическая система Менделеева.
- •52. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.
- •73. Реакция деления ядер.
- •53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
- •54. Колебательные и вращательные спектры молекул.
- •56. Принцип работы квантового генератора.
- •57. Твердотельные и газоразрядные лазеры. Их применение.
- •58. Фононы. Теплоемкость кристаллической решетки.
- •59. Элементы зонной теории в кристаллах.
- •60. Энергетические зоны в кристаллах. Валентная и зона проводимости.
- •61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.
- •63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
- •66. Электронные и дырочные полупроводники.
- •62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
- •64. Собственная проводимость полупроводников.
- •65. Примесная проводимость полупроводников.
- •67. Контакт электронного и дырочного полупроводников …
- •68. Строение атомных ядер. Массовое и зарядовые числа. Нуклоны.
- •69. Взаимодействие нуклонов. Свойства и природа ядерных сил.
- •71. Правила смещения. Α-распад. Взаимопревращения …
- •70. Естественная радиоактивность. Закон радиоактивного распада.
- •75. Термоядерная реакция и проблемы её управления.
- •76. Элементарные частицы. Космическое излучение. …
- •74. Цепная реакция деления ядер. Ядерный реактор.
- •1. Развитие представлений о природе света.
63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
66. Электронные и дырочные полупроводники.
Рассм полупров-к, в к-м часть атомов основного полупр-ка заменена атомами в-ва валентность , к-х отлич-ся валентностью основного полупр-ка.
Пусть в 4х валент. Полупр-к внедрены атомы 5валент примеси. В случае 5валент примеси 4 эл-на этой примеси будут задействованы в образ-и межатомных связей в кристалле. 5й эл-н примеси в создании связи не участвуют, и поэтому оказ-ся слабосвяз-м в атомной примеси. При увел-и темп-ры полупр-ка отрыв-ся прежде всего этот 5й эл-н, при этом обр-ся своб эл-ны, но дырки при этом не образ-ся. Такая примесь наз-ся донорной примесью. В случае донорной примеси проводимость полупроводника яв-ся электронной, а сам полупр-к наз-ся полупр-к n-типа. В случае донорной примеси энерг уровни нах-ся у потолка запрещ зоны. Рассм-м 4х валентный полупр-к в к-й внедрена 3х вал-я примесь. В этом случае одна из связей оказ-ся недоукомплектованной эл-ном. Эту связь может доукомплектовать эл-н из соседней связи основного полупр-ка. При этом своб-е эл-не не появ-ся. Такая примесь наз-ся акцепторной. А сам полупр-к – полупр-ком p-типа. В полупр-ке p-типа проводимость дырочная. В случае акцепторной примеси энерг уровни нах-ся у дна запрещ зоны. P-n переход представляет из себя тонкий слой на границе м/у 2мя областями одного и того же кр-ла, отлич-ся типом проводимости. В n-области осн-ми носителями яв-ся эл-ны, а в p-области – дырки. В области p-n перехода происходит диффузия во встречных направлениях дырок и эл-нов. Эл-ны попадают из n в p-область рекомбинируя с дырками. Дырки перемещаясь из p в n-область рекомбинируют с эл-нами. В рез-те этого p-n перехода оказ-ся сильно обедненной своб носителями заряда и поэтому имеет большое электрич. Сопротив-е. Одновременно на границе p-n областей возникает двойной электрич слой, образ отриц ионами акцепторной примеси в p-области, и полож ионами донорной примеси в n-области. При нек-й концентрации ионов в двойном эл слое наступает равновесие. С т зр зонной теории, равновесие наст-ет тогда, когда срав-ся уровни Ферми p и n областей. Изгибание электрич зон в области p-n перехода обусловлено тем, что потенц энергия эл-нов p области больше, чем в n и соответственно дырок n>p области. Подадим на p-n переход внеш напр-е. Если на p-область отриц напр-е, а на n полож (обратное), то в этом случае внеш поле совпадать по напр-ю с полем запирающ слоя и в этом случае тока ч/з p-n переход не будет. Поменяем (прямое). Если внеш поле будет больше, чем поле запир слоя, то ток будет. Если внеш поле постепенно увел-ть от 0, то ток будет плавно возр-ть, достигнув макс знач-я, когда внеш поле полностью скомпенсирует поле запир слоя.
62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
Идеальный газ из фермионов — ферми-газ — описывается квантовой статистикой Ферми — Дирака. Распределение фермионов по энергиям имеет вид
где <Ni>—среднее число фермионов в квантовом состоянии с энергией Ei, — химический потенциал. В отличие от (235.1) может иметь положительное значение (это не приводит к отрицательным значениям чисел <Ni>). Это распределение называется распределением Ферми — Дирака. (Ei-)/(kT) Если е(Ei-)/(kT)>>1, то распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана:
(ср. с выражением (44.4)), где
Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.
Для фермионов (электроны являются фермионами) среднее число частиц в квантовом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов <N(E)> =f(E), где f(E) — функция распределения электронов по состояниям. Из (236.1) следует, что при Т=0 К
функция
распределения <N(E)1,
если E<0,
и <N(E)0,
если E>0.
График этой функции приведен на рис.
312, а.
В
области энергий от 0 до 0
функция <N(E)>
равна единице. При E=0
она
скачкообразно изменяется до нуля. Это
означает, что при Т=0
К
все нижние квантовые состояния, вплоть
до состояния с энергией E=0,
заполнены электронами, а все состояния
с энергией, большей 0,
свободны. Следовательно, 0
есть
не что иное, как максимальная кинетическая
энергия, которую могут иметь электроны
проводимости в металле при 0 К. Эта
максимальная кинетическая энергия
называется энергией
Ферми и
обозначается ЕF
(EF=0).
Поэтому распределение Ферми — Дирака
обычно записывается в виде
Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энергия Ферми ЕF, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать не от дна «потенциальной ямы», как это делалось в классической теории, а от уровня Ферми, т. е. от верхнего из занятых электронами энергетических уровней.