Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_voprosy_3y_semestr.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
998.38 Кб
Скачать

63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.

66. Электронные и дырочные полупроводники.

Рассм полупров-к, в к-м часть атомов основного полупр-ка заменена атомами в-ва валентность , к-х отлич-ся валентностью основного полупр-ка.

Пусть в 4х валент. Полупр-к внедрены атомы 5валент примеси. В случае 5валент примеси 4 эл-на этой примеси будут задействованы в образ-и межатомных связей в кристалле. 5й эл-н примеси в создании связи не участвуют, и поэтому оказ-ся слабосвяз-м в атомной примеси. При увел-и темп-ры полупр-ка отрыв-ся прежде всего этот 5й эл-н, при этом обр-ся своб эл-ны, но дырки при этом не образ-ся. Такая примесь наз-ся донорной примесью. В случае донорной примеси проводимость полупроводника яв-ся электронной, а сам полупр-к наз-ся полупр-к n-типа. В случае донорной примеси энерг уровни нах-ся у потолка запрещ зоны. Рассм-м 4х валентный полупр-к в к-й внедрена 3х вал-я примесь. В этом случае одна из связей оказ-ся недоукомплектованной эл-ном. Эту связь может доукомплектовать эл-н из соседней связи основного полупр-ка. При этом своб-е эл-не не появ-ся. Такая примесь наз-ся акцепторной. А сам полупр-к – полупр-ком p-типа. В полупр-ке p-типа проводимость дырочная. В случае акцепторной примеси энерг уровни нах-ся у дна запрещ зоны. P-n переход представляет из себя тонкий слой на границе м/у 2мя областями одного и того же кр-ла, отлич-ся типом проводимости. В n-области осн-ми носителями яв-ся эл-ны, а в p-области – дырки. В области p-n перехода происходит диффузия во встречных направлениях дырок и эл-нов. Эл-ны попадают из n в p-область рекомбинируя с дырками. Дырки перемещаясь из p в n-область рекомбинируют с эл-нами. В рез-те этого p-n перехода оказ-ся сильно обедненной своб носителями заряда и поэтому имеет большое электрич. Сопротив-е. Одновременно на границе p-n областей возникает двойной электрич слой, образ отриц ионами акцепторной примеси в p-области, и полож ионами донорной примеси в n-области. При нек-й концентрации ионов в двойном эл слое наступает равновесие. С т зр зонной теории, равновесие наст-ет тогда, когда срав-ся уровни Ферми p и n областей. Изгибание электрич зон в области p-n перехода обусловлено тем, что потенц энергия эл-нов p области больше, чем в n и соответственно дырок n>p области. Подадим на p-n переход внеш напр-е. Если на p-область отриц напр-е, а на n полож (обратное), то в этом случае внеш поле совпадать по напр-ю с полем запирающ слоя и в этом случае тока ч/з p-n переход не будет. Поменяем (прямое). Если внеш поле будет больше, чем поле запир слоя, то ток будет. Если внеш поле постепенно увел-ть от 0, то ток будет плавно возр-ть, достигнув макс знач-я, когда внеш поле полностью скомпенсирует поле запир слоя.

62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.

Идеальный газ из фермионов — ферми-газ — описывается квантовой статистикой Ферми — Дирака. Распределение фермионов по энергиям имеет вид

где <Ni>—среднее число фермионов в квантовом состоянии с энергией Ei,  — химический потенциал. В отличие от (235.1)  может иметь положительное значение (это не приводит к отрицательным значениям чисел <Ni>). Это распределение называется распределением Ферми — Дирака. (Ei-)/(kT) Если е(Ei-)/(kT)>>1, то распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана:

(ср. с выражением (44.4)), где

Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.

Для фермионов (электроны являются фермионами) среднее число частиц в кванто­вом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов <N(E)> =f(E), где f(E) — функция распределения электронов по состояниям. Из (236.1) следует, что при Т=0 К

функция распределения <N(E)1, если E<0, и <N(E)0, если E>0. Гра­фик этой функции приведен на рис. 312, а. В области энергий от 0 до 0 функция <N(E)> равна единице. При E=0 она скачкообразно изменяется до нуля. Это означает, что при Т=0 К все нижние квантовые состояния, вплоть до состояния с энергией E=0, заполнены электронами, а все состояния с энергией, большей 0, свободны. Следовательно, 0 есть не что иное, как максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле при 0 К. Эта мак­симальная кинетическая энергия называ­ется энергией Ферми и обозначается ЕF (EF=0). Поэтому распределение Ферми — Дирака обычно записывается в виде

Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энер­гия Ферми ЕF, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода элек­трона из металла нужно отсчитывать не от дна «потенциальной ямы», как это дела­лось в классической теории, а от уровня Ферми, т. е. от верхнего из занятых элек­тронами энергетических уровней.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]