
- •1. Развитие представлений о природе света.
- •2. Понятие о когерентности электромагнитных волн.
- •3. Интерференция света. Условие интерферентности волн.
- •4. Методы наблюдения интерференции света. Метод Юнга.
- •6. Расчет интерференциоии от 2-х источников света
- •5. Методы наблюдения интерференции света. Зеркала Френеля.
- •7. Интерференция в тонких пленках.
- •8. Ннтерференционные приборы и их применение.
- •9. Принцип Гюйгенса-Френеля.
- •10. Метод зон Френеля.
- •11. Явление дифракции. Дифракция Френеля на круглом отверстии.
- •Дифракция френеля на к руглых отверстиях
- •12. Явление дифракции. Дифракция Френеля на непрозрачном диске.
- •14. Дифракционная решетка. Главные и дополнительные максимумы и минимумы.
- •15. Расчет формулы дифракционной решетки
- •16. Применение дифракционной решетки. Разрешающая способность.
- •Применение явлений д-ии света
- •17. Дифракция рентгеновских лучей.
- •18 .Основы голограмм.
- •19. Дисперсия света.
- •33. Квантовая теория Планка. Формула Планка.
- •20. Электронная теория дисперсии света.
- •21. Поглощение света. Закон Бугера.
- •В прозрачных изотропных средах и в кристаллах куб. Системы может возникать двойной луч преломления под влиянием внеш. Воздейс–й, в частности это происходит при мех. Дифор. Тв. Тел.
- •27. Вращение плоскости поляризации. Эффект Фарадея.
- •28. Тепловое излучение и его характеристики.
- •29. Закон Кирхгофа для равновесного излучения.
- •30 Абсолютно черное тело. Закон Стефана-Больцмана.
- •72. Ядерные реакции и законы сохранения.
- •31. Абсолютно черное тело. Закон смещения Вина.
- •32. Абсолютно черное тело. Формула Релея-Джинса.
- •34. Внешний фотоэффект и его законы.
- •35. Уравнение Эйнштейна для внешнего фотоэффекта.
- •36. Модель атома Резерфорда и ее недостатки.
- •37. Закономерности в спектре излучения атома водорода.
- •38. Постулаты Бора. Модель атома Бора.
- •39. Корпускулярно-волновой дуализм свойств вещества.
- •44. Уравнение Шредингера для стационарных состояний.
- •40. Волны де Бройля и их свойства.
- •41. Соотношение неопределенности Гейзенберга.
- •42. Волновая функция и её статический смысл.
- •43. Общее уравнение Шредингера нерелятивистской квантовой механики
- •45. Прохождение частицы через потенциальный барьер.
- •46. Решение уравнения Шредингера для водородоподобных атомов
- •47. Квантовые числа, их физический смысл.
- •49. Спин электрон. Спиновое квантовое число.
- •48. Пространственное распределение электрона в атоме водорода.
- •50. Принцип Паули. Распределение электронов в атоме по состояниям.
- •55. Спонтанное и вынужденное излучение фотонов.
- •51. Периодическая система Менделеева.
- •52. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.
- •73. Реакция деления ядер.
- •53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
- •54. Колебательные и вращательные спектры молекул.
- •56. Принцип работы квантового генератора.
- •57. Твердотельные и газоразрядные лазеры. Их применение.
- •58. Фононы. Теплоемкость кристаллической решетки.
- •59. Элементы зонной теории в кристаллах.
- •60. Энергетические зоны в кристаллах. Валентная и зона проводимости.
- •61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.
- •63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
- •66. Электронные и дырочные полупроводники.
- •62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
- •64. Собственная проводимость полупроводников.
- •65. Примесная проводимость полупроводников.
- •67. Контакт электронного и дырочного полупроводников …
- •68. Строение атомных ядер. Массовое и зарядовые числа. Нуклоны.
- •69. Взаимодействие нуклонов. Свойства и природа ядерных сил.
- •71. Правила смещения. Α-распад. Взаимопревращения …
- •70. Естественная радиоактивность. Закон радиоактивного распада.
- •75. Термоядерная реакция и проблемы её управления.
- •76. Элементарные частицы. Космическое излучение. …
- •74. Цепная реакция деления ядер. Ядерный реактор.
- •1. Развитие представлений о природе света.
53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
Наиболее часто в молекулах встречается два типа связи: ионная и ковалентная.
Ионная связь (например, в молекулах NaCl, KBr) осуществляется электростатическим взаимодействием атомов при переходе электрона одного атома к другому, т. е. при образовании положительного и отрицательного ионов. Ковалентная связь (например, в молекулах Н2, С2, СО) осуществляется при обобществлении валентных электронов двумя соседними атомами (спины валентных электронов должны быть антипараллельны). Ковалентная связь объясняется на основе принципа неразличимости тождественных частиц (см. § 226), например электронов в молекуле водорода. Неразличимость частиц приводит к специфическому взаимодействию между ними, называемому обменным взаимодействием. Это чисто квантовый эффект, не имеющий классического объяснения, но его можно себе представить так, что электрон каждого из атомов молекулы водорода проводит некоторое время у ядра другого атома и, следовательно, осуществляется связь обоих атомов, образующих молекулу. При сближении двух водородных атомов до расстояний порядка боровского радиуса возникает их взаимное притяжение и образуется устойчивая молекула водорода. Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле Eэл, колебания атомов молекулы Eкол, вращение молекулы Eвращ. Решение этого уравнения — очень сложная задача, которая обычно разбивается на две: для электронов и ядер. Энергия изолированной молекулы ЕEэл+Eкол + Eвращ Каждая из входящих в выражение (230.1) энергий квантуется (ей соответствует набор дискретных уровней энергии) и определяется квантовыми числами. При переходе из одного энергетического состояния в другое поглощается или испускается энергия E =h. При таких переходах одновременно изменяются энергии движения электронов, энергии колебаний и вращения. Из теории и эксперимента следует, что расстояние между вращательными уровнями энергии Eвращ гораздо меньше расстояния между колебательными уровнями Екол, которое, в свою очередь, меньше расстояния между электронными уровнями Eэл.
54. Колебательные и вращательные спектры молекул.
Строение молекул и свойства их энергетических уровней проявляются в молекулярных спектрах — спектрах излучения (поглощения), возникающих при квантовых переходах между уровнями энергии молекул. Спектр излучения молекулы определяется структурой ее энергетических уровней и соответствующими правилами отбора (так, например, изменение квантовых чисел, соответствующих как колебательному, так и вращательному движению, должно быть равно ±1). Итак, при разных типах переходов между уровнями возникают различные типы молекулярных спектров. Частоты спектральных линий, испускаемых молекулами, могут соответствовать переходам с одного электронного уровня на другой (электронные спектры) или с одного колебательного (вращательного) уровня на другой (колебательные (вращательные) спектры). Кроме того, возможны и переходы с одними значениями Eкол и Eвращ на уровни, имеющие другие значения всех трех компонентов, в результате чего возникают электронно-колебательные и колебательно-вращательные спектры. Поэтому спектр молекул довольно сложный. Колебательными и вращательными спектрами обладают только многоатомные молекулы, а двухатомные их не имеют. Это объясняется тем, что двухатомные молекулы не имеют дипольных моментов (при колебательных и вращательных переходах отсутствует изменение дипольного момента, что является необходимым условием отличия от нуля вероятности перехода).