Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
термех-2 часть.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
578.05 Кб
Скачать

12.Теорема о движении центра масс системы

Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассматриваемой механической системе.

, следовательно

13.Теорема об изменении количества движения системы

Эта теорема существует в трех различных формах.

Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих на систему.

, (6.1)

Доказательство: Теорема об изменении количества движения для точки имеет вид:

,

Сложим все уравнений и получим:

,

что и требовалось доказать.

В проекциях на оси координат это утверждение выглядит так:

, , .

Теорема. (в дифференциальной форме). Дифференциал от количества движения системы равен сумме элементарных импульсов всех внешних сил, действующих на систему.

Умножим левую и правую части уравнения (6.1) на и получим

, (6.2)

В проекциях на оси координат это утверждение выглядит так:

, , .

Теорема (в интегральной форме). Изменение количества движения системы за какой-либо промежуток времени равно векторной сумме элементарных импульсов всех внешних сил, действующих на систему за этот же промежуток времени.

Интегрируя обе части уравнения (**) по времени в пределах от нуля до получаем:

В проекциях на оси координат это утверждение выглядит так:

, , .

14. Теорема об изменении кинетического момента системы

Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на систему относительно того же центра.

(6.3)

Доказательство: Теорема об изменении момента количества движения для точки имеет вид:

,

Сложим все уравнений и получим:

или ,

что и требовалось доказать.

Теорема. Производная по времени от момента количества движения системы, взятого относительно какой-либо оси, равна векторной сумме моментов внешних сил, действующих на систему относительно той же оси.

Для доказательства достаточно спроектировать векторное уравнение (6.3) на эту ось. Для оси это будет выглядеть так:.

(6.4)

15. Теорема об изменении кинетической энергии системы

Теорема об изменении кинетической энергии доказанная для точки (вопрос 3) будет справедлива для любой точки системы

Составляя такие уравнения для всех точек системы и складывая их почленно получаем:

или, согласно (19.1.1):

что является выражением теоремы о кинетической энергии системы в дифференциальной форме.

Проинтегрировав (19.2.2) получаем:

- теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее конечном перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил.

Подчеркнем, что внутренние силы не исключаются. Для неизменяемой системы сумма работ всех внутренних сил равна нулю и

Если связи, наложенные на систему, не изменяются со временем, то силы, как внешние так и внутренние, можно разделить на активные и реакции связей, и уравнение (19.2.2) теперь можно записать:

В динамике вводится такое понятие как "идеальная" механическая система. Это такая система, наличие связей у которой не влияет на изменение кинетической энергии, то есть

Такие связи, не изменяющиеся со временем и сумма работ которых на элементарном перемещении равна нулю, называются идеальными, и уравнение (19.2.5) запишется: