
- •1.Основные понятия курса: связь, телекоммуникации, инфраструктура, услуги связи, службы связи, системы связи.
- •2.Связь рф. Структура связи. Единая сеть электросвязи России. Основные положения федерального Закона о связи.
- •3.Эволюция систем связи ссср и рф. Трехуровневая иерархическая модель есэСв. Эволюция иерархической модели. Транспортные и коммутируемые сети.
- •4.Первичная сеть электросвязи. Структура. Сетевые узлы и станции. Зоновый принцип.
- •5.Вторичные сети электросвязи. Телефонные сети. Уровни.
- •6.Международная и междугородная телефонная связь. Демонополизация дальней связи. Требования к операторам дальней связи.
- •7.Операторы дальней связи. Выбор операторов дальней связи.
- •8.Зоновые телефонные сети. Сельские телефонные сети.
- •9.Городские телефонные сети.
- •10.Сети на основе упатс.
- •11.Телеграфные сети.
- •12.Общая характеристика телематических служб и услуг. Лицензирование телематических услуг связи.
- •13.Факсимильные службы.
- •14.Электронная почта.
- •15.Сети передачи данных.
- •16.Сети доступа.
- •17.Многоуровневая система протоколов сетевого взаимодействия. Структура протокольного блока. Концепция вложенных заголовков.
- •18.Модель iso/osi (эмвос). Характеристика уровней эмвос
- •19.Структура стека протоколов tcp/ip.
- •20.Стандартизация в телекоммуникациях
- •21.Кабель – среда распространения электромагнитных сигналов. Линии передачи. Их модель, параметры.
- •22.Падающие и отраженные волны. Согласование нагрузки. Волновое сопротивление. Коаксиальные кабели
- •23.Витые пары.
- •24.Оптическая среда. Законы распространения оптических сигналов.
- •25.Оптоволокно. Потери в оптоволокне.
- •26.Солитонный эффект. Перспективы применения.
- •27.Источники оптических сигналов. Приемники оптических сигналов. Усилители.
- •28.Атмосферные оптические линии.
- •29.Принципы радиосвязи. Законы распространения радиоволн. Зоны Френеля. Эффект Допплера.
- •30.Многолучевое распространение радиосигналов.
- •31.Радиочастотный спектр. Диапазоны радиоволн. Особенности прохождения радиоволн в различных диапазонах. Типы радиоволн.
- •Диапазоны:
- •32.Атмосфера Земли. Ионосферные слои.
- •33.Физический уровень эмвос. Топология сети.
- •34.Мультиплексирование и множественный доступ. Инверсное мультиплексирование. Частотное мультиплексирование.
- •35.Временное мультиплексирование каналов.
- •36.Кодовое разделение каналов.
- •37.Цифровые иерархии скоростей. Схемы pdh. Многократные цифровые системы передачи. Особенности pdh. Параметры электрических интерфейсов pdh. Форматы потоков e1, e2, e3 и e4.
- •38.Топология сетей pdh. Недостатки pdh. Необходимость разработки синхронной иерархии.
- •39.Особенности технологии sonet/sdh. Общая схема мультиплексирования pdh-трибов в технологии sdh.
- •40.Размещение потоков pdh в контейнерах sdh. Формирование vc-4. Структура мультифрейма vc-12.
- •41.Формирование au-4, stm-1, tu-3, tug-3, мультифреймов tu-12. Размещение tug-3 в vc-4.
- •42.Информационные структуры sdh. Сборка stm-n. Заголовки sdh.
- •43. Оборудование sdh.
- •44.Топология сети sdh. Основные конфигурации сетей sdh. Архитектура sdh. Самозалечивающие сети.
- •45.Особенности реализации радиорелейных и спутниковых sdh систем
- •46.Общие принципы объединения цифровых потоков в pdh. Согласование скоростей.
- •47.Принципы синхронизации цсп. Основные положения тсс. Общие положения.
- •48.Качество синхронизации. Режимы работы тсс.
- •49.Иерархическое построение сетей синхронизации. Оборудование синхронизации. Синхронизация в сетях sdh. Сети тсс в рф.
- •50.Спектральное разделение каналов (wdm).
- •51.Радиорелейная связь.
- •52.Спутниковая телефонная связь.
- •53.Спутниковые сети связи. Классификация. Орбиты.
- •54.Интеллектуализация сетей. Трехслойная неиерархическая модель. Развитие концепции интеллектуальной сети.
- •55.Услуги интеллектуальной сети.
- •56.Мультисервисная сеть. Gii. Концепция ngn
- •57.Мобильная связь.
- •59.Цветовые модели
- •60.Модуляция.
23.Витые пары.
Вита́я па́ра — вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой, покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения степени связи между собой проводников одной пары и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Витая пара — один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве сетевого носителя во многих технологиях. Каждая отдельно взятая витая пара, входящая в состав кабеля, предназначенного для передачи данных, должна иметь волновое сопротивление 100±25 Ом. Симметричные медные пары могут обеспечить передачу сигналов низких частот (до 200 кГц) и высоких частот от 200 кГц до 6 ... 9 МГц. При этом высокочастотные пары могут быть экранированными, что обеспечивает необходимую защищенность линий от внешних и переходных помех. Симметричные пары могут использоваться в компьютерных сетях на скоростях до 130 Мбит/с на расстояниях до 120 м и даже могут работать на скорости до 1 Гбит/с на более ограниченных расстояниях. Кабель подключается к сетевым устройствам при помощи соединителя 8P8C. Экранирование обеспечивает лучшую защиту от электромагнитных наводок как внешних, так и внутренних. Экран по всей длине соединен с неизолированным дренажным проводом, который объединяет экран в случае разделения на секции при излишнем изгибе или растяжении кабеля. В зависимости от структуры проводников — кабель применяется одно- и многожильный. Одножильный кабель не предполагает прямых контактов с подключаемой периферией. То есть, как правило, его применяют для прокладки в коробах, стенах и т. д. с последующим терминированием розетками. Связано это с тем, что медные жилы довольно толсты и при частых изгибах быстро ломаются. В свою очередь многожильный кабель замечательно ведет себя при изгибах и скручивании. Кроме того, многожильный провод обладает бо́льшим затуханием сигнала. Поэтому многожильный кабель используют в основном для изготовления патчкордов, соединяющих периферию с розетками. Витопарный кабель состоит из нескольких витых пар. Толщина изоляции проводника — около 0,2 мм, материал обычно поливинилхлорид, для более качественных образцов — полипропилен, полиэтилен. Также внутри кабеля встречается так называемая «разрывная нить», которая используется для облегчения разделки внешней оболочки — при вытягивании она делает на оболочке продольный разрез, который открывает доступ к кабельному сердечнику, гарантированно не повреждая изоляцию проводников. Также разрывная нить, ввиду своей высокой прочности на разрыв, выполняет защитную функцию. В общем случае, цвета оболочки не обозначают особых свойств, но их применение позволяет легко отличать коммуникации c разным функциональным назначением, как при монтаже, так и обслуживании. Кабели для наружной прокладки обязательно имеют влагостойкую оболочку из полиэтилена, которая наносится вторым слоем поверх обычной, поливинилхлоридной. Кроме этого, возможно заполнение пустот в кабеле водоотталкивающим гелем и бронирование с помощью гофрированной ленты или стальной проволоки. Реальные кабельные системы подвержены влиянию шумовых помех. Невосприимчивость - это способность кабельной системы противостоять воздействию шумов и помех. Помехи могут генерироваться передающими антеннами, излучением от других электронных устройств или наведенным шумом от электрических приборов. В кабелях UTP и STP применяются две различные стратегии противостояния шумовым помехам. В неэкранированных кабелях основная ставка делается на хороший баланс пар в кабеле. Когда сбалансированность кабельной UTP-системы приближается к идеальной, наведенные шумовые токи на витых проводниках выравниваются и приемник, который способен обнаруживать только разницу напряжений на паре, становиться невосприимчивым к шумовым помехам. Таким образом, даже без защиты с помощью физического "экрана" идеально сбалансированная пара будет демонстрировать отличную невосприимчивость к шуму. В экранированных кабелях поле шумовой помехи наводит ток в металлическом экране кабеля. В результате стекания на землю наведенного тока на сигнальных проводниках под экраном будет наводиться одинаковый по амплитуде и разнофазный ток. По мере приближения качества экрана к идеальному два тока становятся равными по амплитуде и противофазными, компенсируя влияние шумовых помех. Если в кабеле присутствует более одной пары, то для исключения взаимных наводок пар, которые могли бы нарушить электромагнитный баланс, пары скручивают с различным шагом.
В зависимости от наличия защиты — электрически заземлённой медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности данной технологии:
незащищенная витая пара (UTP ) — отсутствует защитный экран вокруг отдельной пары;
фольгированная витая пара (FTP ) — также известна как F/UTP, присутствует один общий внешний экран в виде фольги;
защищенная витая пара (STP ) — присутствует защита в виде экрана для каждой пары и общий внешний экран в виде сетки;
фольгированная экранированная витая пара (S/FTP ) — внешний экран из медной оплетки и каждая пара в фольгированной оплетке;
незащищенная экранированная витая пара (SF/UTP ) — двойной внешний экран из медной оплетки и фольги, каждая витая пара без защиты.
Наводки, накладываясь на передаваемые по тем же парам полезные сигналы, становятся для последних помехами, которые в силу своей природы называются переходными. Когда уровни полезного сигнала и наводки становятся соизмеримыми, на приеме возникают ошибки, что в конечном итоге снижает качество связи. По месту измерения различают помеху на ближнем и дальнем концах. Если источник помехи и место ее измерения относятся к одному кабелю, то речь идет о внутрикабельной или просто о переходной помехе, если к разным — то о межкабельной или межэлементной. Кроме того, эти факторы могут произвольным образом комбинироваться при анализе. Иначе говоря, в определенных обстоятельствах возникает необходимость в определении, например, суммарной наводки на дальнем конце или даже межкабельной суммарной наводки на ближнем конце. Симметричный кабель, а также стационарная линия и тракт, реализованные на его основе, изначально предназначены для передачи информационного сигнала между пространственно разнесенными точками и, таким образом, представляют собой протяженные объекты. Если источник сигнала, порождающего наводку, и место ее измерения находятся на одном конце этих объектов, то говорят о переходном затухании на ближнем конце NEXT, если на разных — о переходном затухании на дальнем конце FEXT.