- •1.Режимы работы электрических цепей Режимы работы электрической цепи
- •2.Энергетические соотношения в электрических цепях.
- •3.Расчет цепей методом последовательных эквивалентных преобразований.
- •4.Расчет цепей с помощью законов кирхгофа.
- •5.Расчет цепей методом контурных токов.
- •6.Закон Ома для участка цепи с источником эдс.
- •7.Расчет цепей методом эквивалентного генератора.
- •8.Расчет цепей методом двух узлов.
- •9. Методы расчета нелинейных цепей.
- •10.Параметры переменных токов и напряжений. Векторное представление активных величин.
- •Векторное изображение синусоидально изменяющихся величин
- •11.Действующие значения переменных активных величин.
- •12.Комплексное представление активных и пассивных величин. Фазовые соотношения между токами и напряжениями.
- •1 3.Мощность в цепях переменного тока. Баланс мощности в цепях переменного тока.
- •14.Последовательный колебательный контур.
- •15.Параллельный колебательный контур.
- •16.Трансформатор. Схема замещения трансформатора. Опыт холостого хода и опыт короткого замыкания.
- •Опыт короткого замыкания
- •17.Цепи трехпроводного и четырехпроводного трехфазного тока. Соединение трехфазной цепи звездой. Соединение трехфазной цепи треугольником.Мощность в цепях трехфазного тока.
- •Четырехпроводная цепь
- •Соединение фаз генератора и приемника треугольником
- •Мощность трехфазной цепи, ее расчет и измерение
- •Соединение потребителей звездой
- •Соединение потребителей треугольником
- •18.Конструкция и принцип машин постоянного тока. Механические характеристики двигателя.
- •2. Принцип действия машины постоянного тока
- •19.Генератор постоянного тока. Характеристики и способы возбуждения.
- •20.Получение вращающегося магнитного поля статора двигателей переменного тока. Магнитное поле катушки с синусоидальным током
- •Круговое вращающееся магнитное поле двух- и трехфазной обмоток
- •21.Конструкция и принцип действия асинхронного двигателя. Механические характеристики двигателя.
- •22.Построение механической характеристики асинхронного двигателя по паспортным данным.
- •23.Конструкция и принцип действия синхронного двигателя.
- •24.Угловая и механическая характеристика сд. Повышение cos φ с помощью сд.
- •25.Понятие об электроприводе. Выбор двигателей для привода насосов и компрессоров.
- •26.Электроснабжение насосных станций.
- •27.Классификация средств измерения.
- •28.Схема однополупериодного выпрямления. Однополупериодная схема выпрямления
- •29.Схемы двухполупериодного выпрямления. Двухполупериодная схема выпрямления
- •30.Выпрямители трехфазных токов.
- •31.Сглаживающие фильтры. Коэффициенты пульсаций и сглаживания.
- •Коэффициент сглаживания
- •32.Усилительные свойства транзистора.
17.Цепи трехпроводного и четырехпроводного трехфазного тока. Соединение трехфазной цепи звездой. Соединение трехфазной цепи треугольником.Мощность в цепях трехфазного тока.
Трехфазная цепь является частным случаем многофазных систем электрических цепей, представляющих собой совокупность электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, отличающиеся по фазе одна от другой и создаваемые общим источником энергии.
Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, понятие "фаза" имеет в электротехнике два значения: первое – аргумент синусоидально изменяющейся величины, второе – часть многофазной системы электрических цепей. Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, в котором механическая энергия преобразуется в электрическую с трехфазной системой ЭДС; линии передачи со всем необходимым оборудованием; приемников (потребителей), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).
Четырехпроводная цепь
Для расчета трехфазной цепи применимы все методы, используемые для расчета линейных цепей. Обычно сопротивления проводов и внутреннее сопротивление генератора меньше сопротивлений приемников, поэтому для упрощения расчетов таких цепей (если не требуется большая точность) сопротивления проводов можно не учитывать (ZЛ = 0, ZN = 0). Тогда фазные напряжения приемника Ua, Ub и Uc будут равны соответственно фазным напряжениям источника электрической энергии(генератора или вторичной обмотки трансформатора), т.е. Ua = UA; Ub = UB; Uc = UC. Если полные комплексные сопротивления фаз приемника равны Za = Zb = Zc, то токи в каждой фазе можно определить по формулам
(3.10)
İa = Úa / Za; İb = Úb / Zb; İc = Úc / Zc.
В соответствии с первым законом Кирхгофа ток в нейтральном проводе
(3.11)
İN = İa + İb + İc = İA + İB + İC.
Трехпроводная электрическая цепь
Схема соединения источника и приемника звездой без нейтрального провода приведена на рис. 3.10.
Рис. 3.10
При симметричной нагрузке, когда Za = Zb = Zc = Zφ, напряжение между нейтральной точкой источника N и нейтральной точкой приемника n равно нулю, UnN = 0.
Соотношение
между фазными и линейными напряжениями
приемника также равно
,
т.е. UФ = UЛ /
,
а токи в фазах определяются по тем же
формулам (3.12, 3.13), что и для четырехпроводной
цепи. В случае симметричного приемника
достаточно определить ток только в
одной из фаз. Сдвиг фаз между током и
соответствующим напряжением
φ = arctg (X / R).
При несимметричной нагрузке Za ≠ Zb ≠ Zc между нейтральными точками приемника и источника электроэнергии возникает напряжение смещения нейтрали UnN.
Для определения напряжения смещения нейтрали можно воспользоваться формулой межузлового напряжения, так как схема рис 3.10 представляет собой схему с двумя узлами,
(3.14)
,
где: Ya = 1 / Za; Yb = 1 / Zb; Yc = 1 / Zc – комплексы проводимостей фаз нагрузки.
Очевидно, что теперь напряжения на фазах приемника будут отличаться друг от друга. Из второго закона Кирхгофа следует, что
(3.15)
Úa = ÚA - ÚnN; Úb = ÚB - ÚnN; Úc = ÚC - ÚnN.
Зная фазные напряжения приемника, можно определить фазные токи:
(3.16)
İa = Úa / Za = Ya Úa; İb = Úb / Zb = Yb Úb; İc = Úc / Zc = Yc Úc.
Векторы фазных напряжений можно определить графически, построив векторную (топографическую) диаграмму фазных напряжений источника питания и UnN (рис. 3.11).
При изменении величины (или характера) фазных сопротивлений напряжение смещений нейтрали UnN может изменяться в широких пределах. При этом нейтральная точка приемника n на диаграмме может занимать разные положения, а фазные напряжения приемника Úa, Úb и Úc могут отличаться друг от друга весьма существенно.
Таким образом, при симметричной нагрузке нейтральный провод можно удалить и это не повлияет на фазные напряжения приемника. При несимметричной нагрузке и отсутствии нейтрального провода фазные напряжения нагрузки уже не связаны жестко с фазными напряжениями генератора, так как на нагрузку воздействуют только линейные напряжения генератора. Несимметричная нагрузка в таких условиях вызывает несимметрию ее фазных напряжений Úa, Úb, Úc и смещение ее нейтральной точки n из центра треугольника напряжений (смещение нейтрали).
Рис. 3.11
Направление смещения нейтрали зависит от последовательности фаз системы и характера нагрузки.
Поэтому нейтральный провод необходим для того, чтобы:
выравнивать фазные напряжения приемника при несимметричной нагрузке;
подключать к трехфазной цепи однофазные приемники с номинальным напряжением в раз меньше номинального линейного напряжения сети.
Следует иметь в виду, что в цепь нейтрального провода нельзя ставить предохранитель, так как перегорание предохранителя приведет к разрыву нейтрального провода и появлению значительных перенапряжений на фазах нагрузки.
