
- •Аналого-цифровые преобразователи
- •Определение ошибок при прямых измерениях
- •Определение ошибок при косвенных измерениях
- •Полупроводниковые диоды
- •Примеры обозначения приборов:
- •Классификация фильтров по виду их амплитудно-частотных характеристик
- •Классификация фильтров по передаточным функциям
- •Цифроаналоговые преобразователи
- •Бестрансформаторные усилители мощности
- •Приборы электростатической системы
Билет 1.
1.Расчет допуска на выходной параметр устройства при наличии дестабилизирующих факторов и допусков на элементы устройства
Не нашел нихера
2.Классификация, параметры, характеристики АЦП, АЦП последовательного счета
В настоящее время
известно большое число методов
преобразования напряжение-код. Эти
методы существенно отличаются друг от
друга потенциальной точностью, скоростью
преобразования и сложностью аппаратной
реализации. На рис. 2 представлена
классификация А
ЦП
по методам преобразования.
В основу классификации АЦП положен признак, указывающий на то, как во времени разворачивается процесс преобразования аналоговой величины в цифровую. В основе преобразования выборочных значений сигнала в цифровые эквиваленты лежат операции квантования и кодирования. Они могут осуществляться с помощью либо последовательной, либо параллельной, либо последовательно-параллельной процедур приближения цифрового эквивалента к преобразуемой величине.
Аналого-цифровые преобразователи
Аналого-цифровые преобразователи (АЦП) – это устройства, предназначенные для преобразования аналоговых сигналов в цифровые. Для такого преобразования необходимо осуществить квантование аналогового сигнала, т.е. мгновенные значения аналогового сигнала ограничить определенными уровнями, называемыми уровнями квантования. Характеристика идеального квантования имеет вид, приведенный на рис. 18.8.
Рис. 18.8. Квантование аналогового сигнала
Квантование представляет собой округление аналоговой величины до ближайшего уровня квантования, т.е. максимальная погрешность квантования равна ±0,5h (h – шаг квантования).
К основным характеристикам АЦП относят число разрядов, время преобразования, нелинейность и др. Число разрядов – количество разрядов кода, связанного с аналоговой величиной, которое может вырабатывать АЦП. Разрешающая способность – величина, обратная максимальному числу кодовых комбинаций на выходе АЦП. Так, 10-разрядный АЦП имеет разрешающую способность (210=1024)-1, т.е. при шкале АЦП, соответствующей 10 В, абсолютное значение шага квантования не превышает 10 мВ. Время преобразования tпр – интервал времени от момента заданного изменения сигнала на входе АЦП до появления на его выходе соответствующего устойчивого кода.
Рассмотрим конкретный вариант АЦП с последовательным преобразованием входного сигнала (последовательного счета), который называют АЦП со следящей связью (рис. 18.10). В АЦП рассматриваемого типа используется ЦАП и реверсивный счетчик, сигнал которого обеспечивает изменение напряжения на выходе ЦАП.
Настройка схемы такова, что обеспечивается примерное равенство напряжений на входе Uвх и на выходе ЦАП – U. Если входное напряжение Uвх больше напряжения U на выходе ЦАП, то счетчик переводится в режим прямого отсчета и код на его выходе увеличивается, обеспечивая увеличение напряжения на выходе ЦАП. В момент равенства Uвх и U счет прекращается и с выхода реверсивного счетчика снимается код, соответствующий входному напряжению.
Рис. 18.10. АЦП с последовательным преобразование входного сигнала
Метод последовательного преобразования реализуется и в АЦП время-импульсного преобразования (АЦП с генератором линейно изменяющегося напряжения – ГЛИН) (рис. 18.11).
Рис. 18.11. Последовательное АЦП с время-импульсным преобразованием
Принцип действия рассматриваемого АЦП основан на подсчете числа импульсов в отрезке времени, в течение которого линейно изменяющееся напряжение (ЛИН), увеличиваясь от нулевого значения, достигает уровня входного напряжения Uвх. Используются следующие обозначения: СС – схема сравнения; ГИ – генератор импульсов; Кл – электронный ключ; Сч – счетчик импульсов. Отмеченный на временной диаграмме момент времени t1 соответствует началу измерения входного напряжения, а момент времени t2 – равенству входного напряжения и текущего напряжения ГЛИН. Погрешность измерения определяется шагом квантования времени. Ключ Кл подключает к счетчику генератор импульсов от момента начала измерения до момента равенства Uвх и UГЛИН. Через UСч обозначено напряжение на входе счетчика. Код на выходе счетчика пропорционален входному напряжению. Одним из недостатков этой схемы является невысокое быстродействие.
Параметры АЦП и ЦАП:
1) число разрядов до 24
2) разрешенная способность – линейное изменение выходного напряжения при изменении входа на 1, то есть эта цена одного бита.
Uвх=10В
n=8
10\28=10\256=40мВ
Следовательно, цена одного бита 40мВ
Разрешение АЦП — минимальное изменение величины аналогового сигнала, которое может быть преобразовано данным АЦП — связано с его разрядностью. В случае единичного измерения без учёта шумов разрешение напрямую определяется разрядностью АЦП.
3) время преобразования – время от момента подачи входного сигнала, до момента, когда на выходе устанавливается цифровой сигнал.
Обычно АЦП имеет специальный сигнал – конец преобразования на выходном буфере.
Наибольшую погрешность дает АЦП, если он мало разрядный.
Билет 2.
1.Методы обработки результатов измерения
При измерении любой физической величины ее значение всегда получается с ошибкой.
Ошибки (или погрешности) бывают грубые, систематические и случайные.
Грубые ошибки - это неверные результаты, возникающие вследствие недосмотра экспериментатора или неисправности измерительного прибора. Этих ошибок можно избежать при внимательном наблюдении за показаниями приборов, тщательной записи отсчетов по приборам.
Систематические ошибки - могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта и т.д.) с влиянием различных физических условий (потока воздуха, разности температур и т.д.) на эксперимент. Систематические ошибки сохраняют свою величину и знак во время эксперимента. Систематические ошибки опыта могут быть устранены заменой неисправных приборов на исправные, либо изучены и скомпенсированы путем внесения поправок в результаты измерений.
Случайные ошибки - вызываются большим количеством причин, характер и величину влияния которых заранее определить нельзя (сухое трение, а также несовершенство наших органов чувств, люфт в механических приспособлениях, тряска и т.д.). Случайные ошибки меняют величину и знак от опыта к опыту. Случайные ошибки принципиально неустранимы, однако можно учесть их влияние на оценку истинного значения измеряемой величины. Для этого необходимо произвести несколько измерений, причем, чем больше измерений будет произведено, тем точнее можно будет оценить истинное значение измеряемой величины. В качестве наилучшего значения для измеренной величины обычно принимают среднее арифметическое из всех полученных результатов.
Мы будем считать, что грубые и систематические ошибки при измерениях исключены, и потому в дальнейшем будем рассматривать только случайные ошибки.