
- •Билет№1
- •1. Значения термина «статистика». Предмет и метод статистики.
- •2. Анализ процессов на основе sqc. Основные понятия и задачи статистического анализа процессов на основе нормального закона распределения.
- •3. Семь простейших инструментов качества. Диаграмма разброса. Этапы построения.
- •Билет №2
- •1. Исторический обзор развития статистики как науки.
- •2. Контрольные карты накопленных сумм. Правила построения. Правила принятия решений при мониторинге и управлении процессом.
- •3. Семь простейших инструментов качества. Гистограмма. Типичные формы гистограмм.
- •Билет №3
- •1. Теория статистики как научная база при изучении курса «смКиУк»
- •2.Линейная регрессия. Гипотезы о значении коэффициентов линейной регрессии.
- •Проверка значимости коэффициентов простой линейной регрессии и адекватности регрессионной модели.
- •3. Семь простейших инструментов качества. Диаграмма Парето. Этапы построения. Принцип Парето.
- •Билет №4
- •1. Этапы статистического наблюдения. Формы организации статистического наблюдения.
- •2. Понятие о контрольных картах. Назначение контрольных карт.
- •3. Семь простейших инструментов качества. Временной ряд.
- •Билет №5
- •Виды статистического наблюдения. Способы статистического наблюдения. Виды статистического наблюдения
- •Способы статистического наблюдения
- •2.Показатели точности и стабильности процессов. Индекс воспроизводимости. Модифицированный индекс воспроизводимости.
- •3. Семь простейших инструментов качества. Диаграмма Парето. Этапы построения. Принцип Парето.
- •Билет №6
- •Организационные вопросы статистического наблюдения
- •2.Приемочные контрольные карты. Элементы приемочной контрольной карты. Построение приемочной контрольной карты и работа с ней.
- •Построение приемочной контрольной карты и работа с ней
- •7.1 Исходные данные и предположения
- •Билет №7
- •1. Ошибки статистического наблюдения и контроль данных наблюдения.
- •2. Кусум-карта. Методика построения шаблона.
- •1 Предварительные шаги при построении кусум-карты
- •3. Семь простейших инструментов качества. Причинно-следственная диаграмма Исикавы. Этапы построения. Мнемонический приём 4м…6м.
- •Билет№8
- •1. Сводка и группировка статистических данных. Виды группировок.
- •2. Возможность (осуществимость) процесса. Основные характеристики точности и стабильности технологической операции.
- •3. Семь простейших инструментов качества. Метод стратификации. Методика практического использования. Мнемонический приём 4м…6м.
- •Билет №9
- •1. Статистические таблицы. Способы статистического наблюдения.
- •2. Проверка гипотезы о независимости признаков и силе линейной связи.
- •3. Семь простейших инструментов качества. Причинно-следственная диаграмма Исикавы. Этапы построения. Мнемонический приём 4м…6м.
- •Билет№10
- •1. Обобщающие статистические показатели. Абсолютные величины. Относительные величины. Средние величины. Характеристики разброса.
- •2. Контрольные карты Шухарта по качественным признакам для управления процессами: np-карта, р-карта, u-карта, c-карта.
- •3. Семь простейших инструментов качества. Диаграмма разброса. Этапы построения. Типичные виды диаграмм разброса.
- •Билет№11
- •Характеристики разброса
- •Билет №12
- •1. Меры рассеивания, или разброс результатов наблюдения. Средние величины.
- •Билет №13
- •Вопрос1.Распределения дискретных случайных величин
- •Вопрос 2
- •Билет№14
- •Вопрос 1. Распределение Пуассона
- •Оценка значимости параметров взаимосвязи
- •8.4. Непараметрические методы оценки связи
- •Билет №15
- •Биноминальное распределение.
- •Методы случайного отбора выборок штучной продукции. Способы представления продукции на контроль.
- •Семь простейших инструментов качества. Временной ряд.
- •Билет№16
- •Гипергеометрическое распределение случайной величины. Гипергеометрическое распределение
- •Методы случайного отбора выборок штучной продукции. Методы отбора единиц продукции в выборку
- •Семь простейших инструментов качества. Диаграмма Парето. Этапы построения. Принцип Парето.
- •Билет №17
- •1. Нормальный закон распределения непрерывной случайной величины. Кривые нормального распределения.
- •2. Корреляция. Ранговые коэффициенты корреляции.
- •3. Семь простейших инструментов качества. Временной ряд.
- •Билет№18
- •1. Функция стандартного нормального распределения. Плотность нормального распределения.
- •2. Правила принятия решений при спк кп при контроле потребителя по методу доверительных границ.
- •Билет №19
- •1. Статистический приемочный контроль качества продукции по альтернативному признаку. Понятие выборочного плана и схемы контроля.
- •2.Статистики числовых характеристик двух измеримых признаков. Ковариация. Корреляция.
- •3. Семь простейших инструментов качества. Метод стратификации. Методика практического использования. Мнемонический приём 4м…6м.
- •Билет№20
- •1. Спк кп. Оперативная характеристика и ее свойства.
- •3. Семь простейших инструментов качества. Причинно-следственная диаграмма Исикавы. Этапы построения. Мнемонический приём 4м…6м.
- •Билет№21
- •1.Концепция спк кп по приемлемому уровню качества aql. Показатели спк качества продукции.
- •2.Кусум-карты. Методика построения шаблона.
- •3. Семь простейших инструментов качества. Гистограмма. Этапы построения. Типичные формы гистограмм.
- •Билет№22
- •Нормативный уровень качества (nql) (несоответствий). Основные понятия.
- •Основные правила и критерии для интерпретации контрольных карт.
- •Семь простейших инструментов качества. Контрольный листок. Назначение. Формы контрольных листков.
- •Билет№23
- •1. Выбор плана контроля качества продукции поставщиком и потребителем.
- •2. Контрольная карта для арифметического среднего с предупреждающими границами. Особенности карты.
- •3. Семь простейших инструментов качества. Диаграмма разброса. Этапы построения. Типичные виды диаграмм разброса.
- •Билет №24
- •Спк кп по количественному признаку (гост р 50779.50-95). Особенности спк по количественному признаку. Оценка объёма выборки.
- •5. Статистический приемочный контроль поставщика.
- •6. Статистический приемочный контроль потребителя.
- •7. Правила принятия решений по результатам статистического приемочного контроля.
- •Примеры интерпретации положения кривой нормального распределения при sqc
- •3.Семь простейших инструментов качества. Метод стратификации. Методика практического использования. Мнемонический приём 4м…6м.
- •Билет №25
- •1. Спк кп поставщика методом толерантных границ. Три возможных случая задания предельных значений показателя качества при контроле.
- •2. Коэффициент конкордации.
- •3. Семь простейших инструментов качества. Причинно-следственная диаграмма Исикавы. Этапы построения. Мнемонический приём 4м…6м.
- •Билет№26
- •1. Условия обеспечения представительности выборок.
- •2. Показатели точности и стабильности процессов. Индекс воспроизводимости. Модифицированный индекс воспроизводимости.
- •Виды индексов воспроизводимости
- •Условия применения индексов воспроизводимости
- •Методика применения
- •3. Семь простейших инструментов качества. Временной ряд.
- •Билет №27
- •Необходимые условия проведения спк.
- •Правила принятия решений по результатам статистического приемочного контроля.
- •2. Контрольные карты средних арифметических и размахов ( - и r-карты)
- •2.1. Сбор данных
- •2.2. Построение контрольных карт (рисунок а.1 приложения а)
- •3. Семь простейших инструментов качества. Контрольный листок. Назначение. Формы контрольных листков.
- •Билет№28
- •2. Управление на основе анализа переменных по картам среднего арифметического и размаха. Методика построения карты.
- •2.1. Сбор данных
- •2.2. Построение контрольных карт (рисунок а.1 приложения а)
- •3. Семь простейших инструментов качества. Диаграмма Парето. Этапы построения. Принцип Парето.
- •Билет№29
- •3. «Мозговая атака», «штурм», «осада», «атака разносом». Назначение. Правила проведения
- •Билет№30
- •1. Кусум-карты. Методика построения шаблона.
- •1 Предварительные шаги при построении кусум-карты
- •2. Правила принятия решений при спк кп при контроле поставщика по методу доверительных границ.
- •3. Семь простейших инструментов качества. Причинно-следственная диаграмма Исикавы. Этапы построения. Мнемонический приём 4м…6м.
Билет №3
1. Теория статистики как научная база при изучении курса «смКиУк»
Функционирование предприятия во многом зависит от уровня системы менеджмента. Основной целью системы менеджмента качества (СМК) является достижение максимального соответствия результатов работы предприятия – производства товаров и/или услуг – явным требованиям и подразумеваемым потребностям потребителя, организации и общества.
А главная задача, которая ставится перед СМК– это постоянное улучшение качества производимых товаров и услуг за счет регулярного контроля аналитических данных и необходимой корректировки деятельности, полное устранение дефектов и непроизводственных затрат, а также четкое выполнение поставленных задач в срок.
При осуществлении деятельности СМК на предприятии используется целый набор методических средств, которые помогают быстро и эффективно решать поставленные задачи. Среди них важное место занимают методы, относящиеся к области статистики
средства сбора и предоставления данных;
методы обработки статистических данных;
методы, которые относятся непосредственно к теории менеджмента: системный анализ производства, экономические расчеты, управление с помощью планирования СМК.
Применение базовых статистических характеристик изменчивости процессов (среднее, стандартное отклонение, коэффициент вариативности, Ср и т.д.) дают возможность численно измерять процесс и отслеживать тенденции.
2.Линейная регрессия. Гипотезы о значении коэффициентов линейной регрессии.
ЛИНЕЙНАЯ РЕГРЕССИЯ
одной случайной переменной Y=(Y(1), ..., Y(m))' по другой Х=(Х (1), ..., Х (p))' - линейная по xm-мерная векторная форма, описывающая зависимость условного математич. ожидания (при условии Х=x).случайного вектора Y от значений x = (х (1) ..., х (p))'. Соответствующие уравнения
наз. уравнениями линейной регрессии Y по X, а параметры bkj - коэффициентами регрессии.
В приложениях допускается интерпретация переменной X как наблюдаемого параметра (не обязательно случайного), от к-рого зависит математич. ожидание исследуемого результирующего показателя Y(X). Кроме того, часто под Л. р. Y(k) по X понимают "наилучшую" (в определенном смысле) линейную аппроксимацию Y(k) посредством величин X или результат наилучшего
(в определенном
смысле) выравнивания имеющейся системы
экспериментальных точек ("наблюдений")
с помощью гиперплоскости в пространстве
в
ситуациях, когда интерпретация
совокупности этих точек как выборки из
соответствующей генеральной совокупности
может и не быть правомочной. При таком
определении приходится различать разные
варианты Л. р. в зависимости от выбора
способа вычисления ошибки линейной
аппроксимации Y(k) посредством
величин X (или в зависимости от
конкретного выбора критерия качества
выравнивания). Наиболее распространенными
критериями качества аппроксимации Y(k)
с помощью линейных комбинаций X
(линейного выравнивания точек
)
являются:
В
этих соотношениях выбор "весов"
w(X) или wi зависит от
природы конкретной исследуемой схемы.
Так, напр., если Y(k)(X)
интерпретируются Как случайные величины,
дисперсия к-рых
(или
их оценки) известны, то
В
последних двух критериях "невязки"
аппроксимации или выравнивания измеряются
расстояниями
от
Y(k)(X )или
до
искомой гиперплоскости регрессии. Если
коэффициенты bki определяются
из условия минимизации величин
то
Л. р. наз. средней квадратической; при
использовании критериев
Л.
р. наз. средней модульной (или средней
абсолютной); при использовании критериев
-
ортогональной. В не-к-рых случаях Л. р.
в классич. смысле (*) совпадает с Л. р.,
определенной с использованием функционалов
типа Qi. Так, напр., если
вектор
подчиняется
многомерному нормальному закону, то
регрессия Y(k) по X в смысле (*)
совпадает со средней квадратичсской
Л. р. (при w(X)=1).