Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_po_VM.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
514.78 Кб
Скачать

19. Теоремы о среднем. Правило Лопиталя.

Рассмотрим способ раскрытия неопределенностей 0 / 0 и ∞ / ∞, который основан на применении производных.

Правило Лопиталя, при 0 / 0.

Пусть функции f(x) и φ(x) непрерывны и дифференцируемы в окрестности точки x0 и обращается в нуль в этой точке: .

Пусть φ ′(x) ≠ 0 в окрестности точки x0

Если существует предел

, то

Применим к функциям f(x) и φ(x) теорему Коши для отрезка [x0;x], лежащего в окрестности точки x0 , тогда

, где с лежит между x0 и х.

При x→x0 величина с также стремится к х0; перейдем в предыдущем равенстве к пределу:

Так как , то .

Поэтому

(предел отношения двух бесконечно малых равен пределу отношения их производных, если последний существует)

Правило Лопиталя, при ∞ / ∞.

Пусть функции f(x) и φ(x) непрерывны и дифференцируемы в окрестности точки x0 (кроме точки x0), в этой окрестности

Если существует предел

, то

Неопределенности вида 0∙∞ ; ∞-∞ ; 1 ; ∞0 ; 00 сводятся к двум основным.

Например, 0∙∞

Пусть f(x)→0, φ(x)→∞ при х→х0

22. Экстремум функции (для одной переменной)

Если функция f(x) дифференцируема на интервале (a;b) и f’(x)>0 (f’(x)<0), то f(x) возрастает (убывает) на этом промежутке. Точка х0 называется точкой максимума функции f(x), если существует такая окрестность точки х0, что для всех х, не равных х0 из этой окрестности, выполняется неравенство f(x) < f(х0), где х0 – точка максимума. Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум (минимум) функции называется экстремумом.

Необходимое условие экстремума: если дифференцируемая функция f(x) имеет экстремум в точке х0, то ее производная в этой точке равна 0.

Достаточное условие экстремума: если производная меняет знак на минус, то х0 – точка максимума; если с минуса на плюс, то точка х0 – точка минимума.

23.Направление выпуклости ф-ии (опр,признаки)

Опр. Ф-ция явл. выпуклой (вогнутой) на (a,b) если кассат. к граф-ку ф-ции в любой т-ке интервала, лежит ниже (выше) гр. ф-ции.

y=y0+f‘(x0)(x-x0)=f(x0)+f‘(x0)(x-x0) – линейная ф-ция х, который не превосходит f(x) и не меньше f(x) в случае вогнутости неравенства хар-щие выпуклость (вогнутость) через диф. f(x)f(x0)+ f‘(x0)(x-x0)  x,x0(a;b) f вогнута на (а,b). Хорда выше (ниже), чем график для вып. ф-ций (вогн.) линейная ф-ция kx+b, в частности постоянна, явл. вып. и вогнутой.

.Точки перегиба графика ф-ии(опр,признаки)

Опр. Т-ки разд. интервалы строгой выпуклости и строгой вогнутости наз-ся т-ми перегиба т. х0 есть т-ка перегибы, если f‘‘(x0)=0 и 2-я пр-ная меняет знак при переходе через х0=> в любой т-ке перегиба f‘(x) имеет локальный экстремум.

Геометр. т-ка перегиба хар-ся тем что проведенная касат. в этой т-ке имеет т-ки графика по разные стороны.

24. Асимптоты

Асимптотой кривой называется прямая, расстояние до которой от точки, лежащей на кривой, стремится к 0 при неограниченном удалении от начала координат этой точки по кривой.

А

аимптоты бывают вертикальными, горизонтальными и наклонными.

Прямая х=a является вертикальной асимптотой графика функции y=f(x), если lim f(x)=∞ ,

x→0±a

Уравнение наклонной асимптоты будем искать в виде y=Rx+b

R = lim(y/x) ; b = lim (y – Rx)

x→0 x→0

Если y = b, то это уравнение горизонтальной асимптоты.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]