
- •1. Матрицы. Линейные операции над ними и их свойства.
- •2. Умножение матриц. Транспонирование. Свойства.
- •3. Определители матриц. Свойства определителей. Миноры и алгебраические дополнения.
- •4. Обратная матрица. Достаточное условие существования обратной матрицы.
- •6. Решение линейных уравнений. Решение невырожденых систем.
- •8. Решение произвольных систем. Теорема Кронекера-Капелли.
- •9. Однородные система уравнений. Фундаментальная система решений.
- •11. Декартова и полярная система координат.
- •12.Скалярное произведение векторов и его свойства.
- •13. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми.
- •14. Плоскость в пространстве. Виды уравнения плоскостей. Угол между плоскостями.
- •15. Прямая в пространстве. Виды уравнений прямой. Угол между прямыми.
- •21. Линейные пространства. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства.
- •22, 23. Матрица перехода от базиса к базису. Преобразование координат вектора при переходе к новому базису.
- •24.Собственные векторы и собственные значения
- •25. Приведение матрицы к диагональному виду
- •28. Критерий Сильвестра
- •29. Исследование кривой второго порядка по ее уравнению без произведения координат.
- •1. Определение предела числовой функции. Односторонние пределы. Свойства пределов.
- •3. Замечательные пределы.
- •4. Предел функции по Гейне
- •5.Предел функции на бесконечности
- •7. Замечательные пределы.
- •8.Эквивалентные бесконечно малые величины и их св-ва
- •9, 12. Непрерывные функции и их свойства.
- •10.Доказательство непрерывности элементарных функций.
- •11. Точка разрыва функций и их классификация.
- •20 Формула Тейлора с остаточным членом в форме
- •21. Разложение функций ex, cos X, sin X по формуле Маклорена
- •14. Дифференцируемость функции. Дифференциал.
- •15. Правила дифференцирования суммы, произведения, частного функции. Производные сложных функций.
- •16. Дифферинциал и его применение.
- •17. Дифференциалы высших порядков.
- •18. Рррррррррррррррр
- •19. Теоремы о среднем. Правило Лопиталя.
- •22. Экстремум функции (для одной переменной)
- •23.Направление выпуклости ф-ии (опр,признаки)
- •24. Асимптоты
19. Теоремы о среднем. Правило Лопиталя.
Рассмотрим способ раскрытия неопределенностей 0 / 0 и ∞ / ∞, который основан на применении производных.
Правило Лопиталя, при 0 / 0.
Пусть функции
f(x)
и φ(x)
непрерывны и дифференцируемы в
окрестности точки x0
и обращается в нуль в этой точке:
.
Пусть φ ′(x) ≠ 0 в окрестности точки x0
Если существует предел
,
то
Применим к функциям f(x) и φ(x) теорему Коши для отрезка [x0;x], лежащего в окрестности точки x0 , тогда
,
где с лежит между x0
и х.
При x→x0 величина с также стремится к х0; перейдем в предыдущем равенстве к пределу:
Так как
,
то
.
Поэтому
(предел отношения двух бесконечно малых равен пределу отношения их производных, если последний существует)
Правило Лопиталя, при ∞ / ∞.
Пусть функции f(x) и φ(x) непрерывны и дифференцируемы в окрестности точки x0 (кроме точки x0), в этой окрестности
Если существует предел
, то
Неопределенности вида 0∙∞ ; ∞-∞ ; 1∞ ; ∞0 ; 00 сводятся к двум основным.
Например, 0∙∞
Пусть f(x)→0, φ(x)→∞ при х→х0
22. Экстремум функции (для одной переменной)
Если функция f(x) дифференцируема на интервале (a;b) и f’(x)>0 (f’(x)<0), то f(x) возрастает (убывает) на этом промежутке. Точка х0 называется точкой максимума функции f(x), если существует такая окрестность точки х0, что для всех х, не равных х0 из этой окрестности, выполняется неравенство f(x) < f(х0), где х0 – точка максимума. Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум (минимум) функции называется экстремумом.
Необходимое условие экстремума: если дифференцируемая функция f(x) имеет экстремум в точке х0, то ее производная в этой точке равна 0.
Достаточное условие экстремума: если производная меняет знак на минус, то х0 – точка максимума; если с минуса на плюс, то точка х0 – точка минимума.
23.Направление выпуклости ф-ии (опр,признаки)
Опр. Ф-ция явл. выпуклой (вогнутой) на (a,b) если кассат. к граф-ку ф-ции в любой т-ке интервала, лежит ниже (выше) гр. ф-ции.
y=y0+f‘(x0)(x-x0)=f(x0)+f‘(x0)(x-x0) – линейная ф-ция х, который не превосходит f(x) и не меньше f(x) в случае вогнутости неравенства хар-щие выпуклость (вогнутость) через диф. f(x)f(x0)+ f‘(x0)(x-x0) x,x0(a;b) f вогнута на (а,b). Хорда выше (ниже), чем график для вып. ф-ций (вогн.) линейная ф-ция kx+b, в частности постоянна, явл. вып. и вогнутой.
.Точки перегиба графика ф-ии(опр,признаки)
Опр. Т-ки разд. интервалы строгой выпуклости и строгой вогнутости наз-ся т-ми перегиба т. х0 есть т-ка перегибы, если f‘‘(x0)=0 и 2-я пр-ная меняет знак при переходе через х0=> в любой т-ке перегиба f‘(x) имеет локальный экстремум.
Геометр. т-ка перегиба хар-ся тем что проведенная касат. в этой т-ке имеет т-ки графика по разные стороны.
24. Асимптоты
Асимптотой кривой называется прямая, расстояние до которой от точки, лежащей на кривой, стремится к 0 при неограниченном удалении от начала координат этой точки по кривой.
А
аимптоты бывают вертикальными, горизонтальными и наклонными.
Прямая х=a является вертикальной асимптотой графика функции y=f(x), если lim f(x)=∞ ,
x→0±a
Уравнение наклонной асимптоты будем искать в виде y=Rx+b
R = lim(y/x) ; b = lim (y – Rx)
x→0 x→0
Если y = b, то это уравнение горизонтальной асимптоты.