Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metallicheskie_svoystva_elementov_v_gruppe_sver...docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
439.36 Кб
Скачать

Ковалентные связи углерода

Число групп, связанных с углеродом

Тип гибридизации

Типы участвующих химических связей

Примеры формул соединений

4

sp3

Четыре  - связи

3

sp2

Три   - связи и одна  - связь

2

sp

Две   - связи и две  -связи

H–C C–H

σ-, π-Связи

При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали, имеющие более низкую энергию. В зависимости от формы МО – σ-МО или π-МО – образующиеся связи относят к σ- или p-типу.

  • σ-Связь – ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов (т.е. при осевомперекрывании АО).

  • π-Связь – ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов.

  • π-Связи возникают между атомами, уже соединенными σ-связью (при этом образуются двойные и тройные ковалентные связи). π-Связь слабее σ-связи из-за менее полного перекрывания р-АО

Различное строение σ- и π-молекулярных орбиталей определяет характерные особенности σ- и π-связей.

  1. σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами.

  2. По σ-связям возможно внутримолекулярное вращение атомов, т.к. форма σ-МО допускает такое вращение без разрыва связи (аним., ~33 Kб). Вращение по двойной (σ + π) связи невозможно без разрыва π-связи!

  3. Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами. Поэтому поляризуемость π-связи значительно выше, чем σ-связи.

4 Энергетика химических процессов

В химии широко используется понятие "система". Системой называют произвольную часть пространства, где содержится по крайней мере одно (или несколько) веществ. Внутри системы (между ее отдельными частями) может происходить химическое взаимодействие или перераспределение массы и энергии.

Часть объема системы, во всех точках которой физические и химические свойства одинаковы, отделенная от других частей системы поверхностью раздела, называют фазой. Агрегатное состояние веществ внутри одной и той же фазы одинаково (твердая фаза, жидкая фаза, газообразная фаза).

Система – это изучаемое тело или группа тел, которые взаимодействуют между собой и мысленно или реально отделены от окружающей среды границами, проводящими или не проводящими тепло.

В зависимости от характера взаимодействия системы с окружающей средой различают открытые, закрытые и изолированные системы.

Открытые системы могут обмениваться с окружающей средой энергией и веществом. Например, водный раствор хлорида натрия, находящийся в открытом сосуде. При испарении воды из раствора и при теплообмене будут меняться масса системы и ее температура, а, следовательно, и энергия.

Закрытые системы не обмениваются с окружающей средой веществом. Например, раствор хлорида натрия в закрытом сосуде. Если раствор и окружающая среда имеют разную температуру, то будет происходить нагревание или охлаждение раствора, а, следовательно, будет меняться его энергия.

Изолированные системы не могут обмениваться со средой ни веществом, ни энергией. Изолированная система – это идеализация. В природе таких систем нет. Но, несмотря на невозможность практического воплощения, изолированные системы позволяют определять максимальные теоретические разности энергий между системой и ее окружением.

Гомогенная система — система, химический состав и  физические свойства которой во всех частях одинаковы или меняются непрерывно,  без скачков (между частями системы нет поверхностей раздела). В гомогенной системе  из двух и более химических компонентов каждый компонент распределен в массе другого в  виде молекул, атомов, ионов. Составные части гомогенной системы нельзя отделить друг от  друга механическим путем. Примеры гомогенных систем: лед, жидкие или твердые растворы,  смесь газов и др.  Гетерогенная система — неоднородная система, состоящия из однородных частей (фаз),  разделенных поверхностью раздела. Однородные части (фазы) могут отличаться друг от  друга по составу и свойствам. Число веществ (компонентов), термодинамических фаз и  степеней свободы связаны правилом фаз. Примерами гетерогенных систем могут служить:  жидкость — насыщенный пар; насыщенный раствор с осадком; многие сплавы.  Твердый катализатор в токе газа или жидкости тоже гетерогенная система  (гетерогенный катализ). 

Внутренняя энергия термодинамическая функция состояния системы, ее энергия, определяемая внутренним состоянием. Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов, молекул, ионов, электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной). На внутреннюю энергию влияет изменение внутреннего состояния системы под действием внешнего поля; во внутреннюю энергиювходит, в частности, энергия, связанная с поляризацией диэлектрика во внешнем электрическом поле и намагничиванием парамагнетика во внешнем магнитном поле. Кинетическая энергия системы как целого и потенциальная энергия, обусловленная пространственным расположением системы, во внутреннюю энергию не включаются. В термодинамике определяется лишь изменение внутренней энергии в различных процессах. Поэтому внутреннюю энергию задают с точностью до некоторого постоянного слагаемого, зависящего от энергии, принятой за нуль отсчета.

Внутренняя энергия U как функция состояния вводится первым началом термодинамики, согласно которому разность между теплотой Q, переданной системе, и работой W, совершаемой системой, зависит только от начального и конечного состояний системы и не зависит от пути перехода, т.е. представляет изменение фуникции состояния ΔU

Энтальпия (от греч. enthálpo — нагреваю) (теплосодержание, тепловая функция Гиббса), потенциал термодинамический, характеризующий состояние термодинамической системы при выборе в качестве основных независимых переменных энтропии S и давления р. Обозначается H (S, р, N, xl), где N — число частиц системы, xi — другие макроскопические параметры системы. Энтальпия — аддитивная функция, т. е. энтальпия всей системы равна сумме энтальпий составляющих её частей; с внутренней энергией U системы энтальпия связана соотношением.

Энтропи́я (от др.-греч. ἐντροπία - поворот, превращение) — в естественных науках мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

Энтропия в информатике — степень неполноты, неопределённости знаний.

Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.

,

где   — приращение энтропии;   — минимальная теплота, подведенная к системе; T — абсолютная температура процесса;

Энергия Гиббса  (изобарно-изотермический потенциал, свободная энтальпия), один из потенциалов термодинамических системы. Обозначается G, определяется разностью между энтальпией H и произведением энтропии S на термодинамическую температуру Т ΔтG = ΔтH - T·ΔтS. В химических процессах одновременно действуют два противоположных фактора - энтропийный (T·ΔтS) иэнтальпийный (ΔтH). Суммарный эффект этих противоположных факторов в процессах, протекающих при постоянном давлении и температуре определяет изменение энергии Гиббса (G):

ΔтG = ΔтH - T·ΔтS

Из этого выражения следует, что  ΔтH =  ΔтG + T·Δт, то есть некоторое количество теплоты расходуется на увеличении энтропии (T·ΔтS), эта часть энергии потеряна для совершения полезной работы, её часто называют связанной энергией. Другая часть теплоты (ΔтG) может быть использована для совершения работы, поэтому энергию Гиббса часто называют также свободной энергией.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности осуществления процесса. При ΔтG процесс может протекать, при ΔтG>0  процесс протекать не может (иными словами, если энергия Гиббса в исходном состоянии системы больше, чем в конечном, то процесс принципиально может протекать, если наоборот - то не может). Если же , то ΔтG=0 система находится в состоянии химического равновесия.

Обратите внимание, что речь идёт исключительно о принципиальной возможности протекания реакции. В реальных же условиях реакция может не начинаться и при соблюдении неравенства  Δт(по кинетическим причинам). Классическим определением энергии Гиббса является выражение:

G=U+PV-TS, 

где U - внутренняя энергия, P - давление, V - объем, T - абсолютная температура, S - энтропия.

Адиабатический процесс – это процесс квазистатического расширения или сжатия газа в сосуде с теплонепроницаемыми стенками. Первый закон термодинамики для адиабатического процесса принимает вид 

A = –ΔU.

Изотермический процесс – это процесс квазистатического расширения или сжатия вещества, находящегося в контакте с тепловым резервуаром, (T = const).

Так как внутренняя энергия идеального газа зависит только от температуры (закон Джоуля), то первый закон термодинамики для изотермического процесса записывается в виде: 

Q = A.

При изохорическом процессе (V = const) поглощение или выделение тепла (тепловой эффект) связано только с изменением внутренней энергии: 

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса

ΔH = ΔU + PΔV

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами.

ΔU = Q – A.

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме: 

Q = ΔU + A.

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила названиевечного двигателя (perpetuum mobile) первого рода. Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты Q от окружающих тел или уменьшения ΔU своей внутренней энергии.

Применим первый закон термодинамики к изопроцессам в газах.

  1. В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно, 

    Q = ΔU = U (T2) – U (T1).

  2. Здесь U (T1) и U (T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0).

  3. В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением 

    A = p (V2 – V1) = p ΔV.

  4. Первый закон термодинамики для изобарного процесса дает: 

    Q = U (T2) – U (T1) + p (V2 – V1) = ΔU + p ΔV.

  5. При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0.

  6. В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0.

Первый закон термодинамики для изотермического процесса выражается соотношением 

Q = A.

Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам.

Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами. Сосуды с теплонепроницаемыми стенками называются адиабатическими оболочками, а процессы расширения или сжатия газа в таких сосудах называются адиабатическими.

В адиабатическом процессе Q = 0; поэтому первый закон термодинамики принимает вид 

A = –ΔU,

т. е. газ совершает работу за счет убыли его внутренней энергии.

Второй Закон Термодинамики, как и Первый (Закон сохранения энергии) установлен эмпирическим путем. Впервые его сформулировал Клаузиус: "теплота сама собой переходит лишь от тела с большей температурой к телу с меньшей температурой и не может самопроизвольно переходить в обратном направлении".

Другая формулировка: все самопроизвольные процессы в природе идут с увеличением энтропии. (Энтропия - мера хаотичности, неупорядоченности системы).

Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с большей температурой к телу с меньшей, до тех пор, пока температуры обоих тел не выровняются. При этом от одного тела к другому будет передано определенное количество тепла dQ. Но энтропия при этом у первого тела уменьшится на меньшую величину, чем она увеличится у второго тела, которое принимает теплоту, так как, по определению, dS=dQ/T (температура в знаменателе!). То есть, в результате этого самопроизвольного процесса энтропия системы из двух тел станет больше суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с высокой Т к телу с более низкой Т привел к тому, что энтропия системы из этих двух тел увеличилась!

Заметим, что, рассматривая эту систему из двух тел, мы подразумевали, что внешнего теплопритока в нее или теплооттока из нее нет (для простоты, чтобы не пудрить себе мозги) - то есть, считали ее изолированной (или замкнутой). Отсюда еще одна формулировка Второго Закона Термодинамики: "При прохождении в изолированной системе самопроизвольных процессов энтропия системы возрастает". Или: "Энтропия изолированной системы стремится к максимуму" - так как самопроизвольные процессы передачи тепла всегда будут происходить, пока есть перепады температур.

А что будет, если наша система из двух тел будет не изолирована (незамкнута) и, допустим, в нее поступает тепло? Ясно, что ее энтропия будет увеличиваться еще больше, так как при получении телом тепла энтропия его увеличивается (dS=dQ/T).

Но для простоты формулировки этот момент обычно не упоминают и поэтому формулируют Второй Закон термодинамики именно для изолированных систем. Хотя, как мы видим, он действует точно также и для открытых систем в случае поступления в них тепла.

И представьте, эти идиоты эволюционисты уперлись в общепринятую формулировку Второго Закона термодинамики для изолированных систем, утверждая, что, мол, если система открыта, то Второй Закон Термодинамики не действует! Это какими же тупыми и безмозглыми надо быть, что даже мозгами чуть-чуть лень пошевелить, чтобы понять такую простую истину, что для открытой системы с подведением тепла энтропия растет даже быстрее, чем для изолированной!