
- •План характеристики элемента по положению в Периодической системе д.И. Менделеева
- •Пример характеристики элемента по положению в Периодической системе д. И. Менделеева
- •3 Химическая связь и строение молекул:
- •Ковалентные связи углерода
- •4 Энергетика химических процессов
- •Закон Гесса
- •5 Химическая кинетика
- •Определение константы скорости химической реакции
- •Гомогенный катализ
- •Гетерогенный катализ
- •6 Химическое равновесие
- •7 Растворы
- • Закон Рауля
- •Способы выражения концентрации раствора
- •Ионные реакции в растворах
- •8 Водородный показатель и гидролиз солей
- •Диссоциация воды
- •1.2. Водородный показатель - рН
- •1.3. Сильные и слабые электролиты
- •1.4. Гидролиз солей
- •1.5. Количественные характеристики гидролиза
- •9 Окислительно-восстановительные процессы
- •10 Коррозия металлов
- •1. Коррозия металлов
- •2. Методы защиты металлов от коррозии
- •11 Дисперсные системы
- •12 Вяжущие вещества
- •1.3.2. Глиноземистый цемент
- •3.Коррозия бетона и меры борьбы с ней
- •4. Методы предотвращенияи снижения степени коррозии бетона
1.3.2. Глиноземистый цемент
Глиноземистый цемент – быстротвердеющее, гидравлическое вяжущее, получаемое путем высокотемпературного обжига (до начала спекания, т.е. до 1600°С) смеси известняка (СаСО3) с бокситами (xAl2O3 · yH2O). Бокситы встречаются сравнительно редко и являются ценным сырьем для получения металлического алюминия. Поэтому глиноземистый цемент является более дорогим строительным материалом, чем портландцемент.
Главной составной частью этого цемента является однокальциевый алюминат СаО · Al2O3. При взаимодействии с водой образуется гидрат двухкальциевого алюмината:
2(СаО · Al2O3) + 10Н2О = 2СаО · Al2O3 · 7Н2О + 2Al(OH)3.
Двухкальциевый гидроалюминат 2СаО · Al2O3 · 7Н2О – главная составляющая часть затвердевшего глиноземистого цемента. Гидратация глиноземистого цемента сопровождается выделением значительного количества тепла. Это ценно для работ при низких температурах.
В затвердеваемом цементном камне не содержится свободного Са(ОН)3 и 3СаО · Al2O3 · 6Н2О и это делает его более стойким в отношении физической и сульфатной коррозии.
Схватывание глиноземистого цемента начинается через час после затворения и длится не более 12 часов. Твердение происходит в основном в течение 1-3 дней.
3.Коррозия бетона и меры борьбы с ней
Коррозией бетона называется понижение прочности, повреждение и разрушение бетона под влиянием окружающей среды.
Большой вклад в изучение коррозии бетона и мер борьбы с ней внесли русские ученые А.А.Байков, В.М.Москвин, С.Н.Алексеев, В.В,Тимашев и др. Различают коррозию бетона трех видов.
Эрозия бетона — это процесс истирания поверхности слоя бетона в результате абразивного воздействия потока воды, насыщенного мелкими частицами каменных материалов.
Валуны, булыжники и другие крупные фракции повреждают поверхность бетона и ускоряют процесс эрозии бетона.
4. Методы предотвращенияи снижения степени коррозии бетона
Предотвращение коррозии цементного камня обеспечивается различными способами: изменением минералогического состава клинкера, фторированием поверхности бетона, регулированием тонкости помола цемента, введением в его состав гидравлически активных материалов, автоклавной обработкой изделий из бетона и гидроизоляцией бетонных сооружений.
4.1. Влияние минералогического состава клинкера
Стойкость портландцемента в пресных водах можно повысить, уменьшив в нем содержание трехкальциевого силиката – минерала, твердеющего с выделением большого количества свободной извести. Обычно стандарт на сульфатостойкий цемент предусматривает следующие требования: 3СаО · Al2O3 не более 5%(мас.), сумма 3СаО · Al2O3 + 4СаОAl2O3 ·Fe2O3 – не более 22%, 3СаО · SiO2 – не более 50%.
Фторирование поверхности бетона
Другой мерой защиты бетона от коррозии является обработка поверхности бетона растворами фторосиликатов магния или натрия с целью придания ей водонепроницаемости. Фторосиликаты реагируют с карбонатом и гидроксидом кальция поверхностного бетонного слоя:
2CaСO3 + MgSiF6 + nH2O = 2CaF2↓ + MgF2 + SiO2 · nH2O↓ + 2CO2↑; (13)
2Ca(OH)2 + MgSiF6 + (n-2)H2O = 2CaF2↓ + MgF2↓ + SiO2 · nH2O. (14)
Образуются труднорастворимые в воде вещества CaF2, MgF2, SiO2 · nH2O.
4.3. Влияние тонкости помола на стойкость против коррозии
Согласно В.С.Горшкову, увеличение тонкости помола способствует повышению сульфатостойкости цементного камня, этот факт объясняется тем, что увеличение тонкости помола сопровождается формированием плотного цементного камня с высокой водонепроницаемостью, исключающей возможность миграции агрессивной среды, что и обусловливает высокую коррозийную стойкость бетона.
4.4. Влияние тепловлажностной обработки цементного камня на его коррозийную стойкость
Обработка цементного камня паром при температуре выше 100°С обеспечивает хорошую коррозийностойкость бетона. При автоклавной обработке под высоким давлением Са(ОН)2 реагирует с SiO2 с образованием низкоосновных гидросиликатов, что повышает сульфатостойкость цемента, поскольку реакция
Са(ОН)2 + Na2SO4 = CaSO4 · 2H2O + 2NaOH (15)
прекращается. Гидросиликаты кальция, образующиеся при автоклавной обработке, устойчивы к воздействию агрессивных сред. В процессе обработки образуются 3СаО · Al2O3 · 6H2O и гидрогранаты кальция
3СаО · (Al,Fe)2O3 · 6H2O, SiO2, обладающие высокой устойчивостью к действию сульфатов натрия.
4.5. Введение гидравлически активных добавок
Введение добавок в цемент способствует повышению его коррозийной стойкости. В этом случае протекает реакция
Са(ОН)2 + SiO2 + H2O = CaO · SiO2 · H2O. (16).
Образующиеся гидросиликаты кальция менее растворимы в воде и практически не вступают в обменные реакции с сульфатами. Кроме того, введение в состав гранулированного шлака и горелой породы тоже оказывает положительное действие на коррозийностойкость бетона.
4.6. Гидроизоляция бетона
Гидроизоляция бетонного сооружения является эффективным способом, предотвращающим проникновение воды в бетон. С этой целью сооружение покрывают различными непроницаемыми покрытиями. Однако этот прием очень трудоемкий и дорогой. В последние годы для повышения водонепроницаемости бетонов используют расширяющиеся цементы и полимерные композиции на их основе. В качестве полимерных добавок применяют дивинилстирольный латекс СКС-65 ГП, водно-спиртовые растворы кремнийорганических жидкостей ГКЖ-10 или ГКЖ-11 (силиконаты или алюмосиликонаты натрия жидкие), фуриловый спирт, водорастворимые алифатические смолы. Цементный камень на расширяющемся цементе имеет более плотную структуру, чем цементный камень на портландцементе. Введение в цементный камень водорастворимых полимерных добавок приводит к значительному снижению микропористости, что вызывает уменьшение пор (появляются поры с радиусом 100 · 10 -10 м). Применение таких цементов позвляет обеспечить значительное снижение газо-, водо- и рассолопроницаимости цементного камня и раствора в сравнении с соответствующими составами на портландцементе.