Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
khimia_otvety.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
614.01 Кб
Скачать

21.Аминокислоты

Аминокислоты можно рассматривать как производные углеводородов, содержащие аминогруппы (–NH2) и карбоксильные группы (–CООН).

Общая формула: (NH2)mR(COOH)n,

Номенклатура.

2-аминобутановая кислота

(α-аминобутановая)

Остатки около 20 различных α-аминокислот входят в состав белков.

Химические свойства. Аминокислоты являются полифункциональными соединениями. Вступают в реакции, характерные для аминов и карбновых кислот (см. химические свойства карбоновых кислот и аминов).

I. Амфотерные свойства.

1. Кислотные свойства (участвует карбоксильная группа):

глицин глицинат натрия (соль)

2. Основные свойства (участвует аминогруппа):

солянокислый глицин (соль)

II. Образование внутренних солей.

Моноаминомонокарбоновые кислоты (нейтральные кислоты):

внутренняя соль

(биполярный ион, или цвиттер-ион)

Водные растворы моноаминомонокарбоновых кислот нейтральны (рН = 7). Водные растворы моноаминодикарбоновых кислот имеют рН < 7, так как в результате образования внутренних солей этих кислот в растворе появляется избыток ионов водорода Н+. Водные растворы диаминомонокарбоновых кислот имеют рН > 7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН-.

III. Взаимодействие аминокислот друг с другом – образование пептидов.

Две аминокислоты образуют дипептид, три – трипептид, n - полипептид:

пептидная связь (амидная связь)

глицин аланин глицилаланин

При составлении названия дипептида сначала называют аминокислоту, у которой в образовании дипептида участвует группа –СООН. В тривиальном названии этой кислоты последняя буква «н» заменяется буквой «л». Затем прибавляют без изменений тривиальное название аминокислоты, у которой в образовании дипептида участвует группа –NH2.

Общая формула пептидов:

Способы применения аминокислот:

1) аминокислоты широко распространены в природе;

2) молекулы аминокислот – это те кирпичики, из которых построены все растительные и животные белки; аминокислоты, необходимые для построения белков организма, человек и животные получают в составе белков пищи;

3) аминокислоты прописываются при сильном истощении, после тяжелых операций;

4) их используют для питания больных, минуя желудочно-кишечный тракт;

5) аминокислоты необходимы в качестве лечебного средства при некоторых болезнях (например, глутаминовая кислота используется при нервных заболеваниях, гистидин – при язве желудка);

6) некоторые аминокислоты применяются в сельском хозяйстве для подкормки животных, что положительно влияет на их рост;

7) имеют техническое значение: аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна – капрон и энант.

22. Гетероциклические соединения.Азотосодержащие орг.Соед….

Гетероциклические соединения — это органические соединения, содержащие в своих молекулах кольца (циклы), в образовании которых кроме атома углерода принимают участие и атомы других элементов.Атомы других элементов, входящие в состав гетероцикла, называются гетероатомами. Наиболее часто встречаются в составе гетероциклов гетероатомы азота, кислорода, серы, хотя могут существовать гетероциклические соединения с самыми различными элементами, имеющими валентность не менее двух.Гетероциклические соединения могут иметь в цикле 3, 4, 5, 6 и более атомов. Однако наибольшее значение имеют пяти- и шестичленные гетероциклы. Эти циклы, как и в ряду карбоциклических соединений, образуются наиболее легко и отличаются наибольшей прочностью. В гетероцикле может содержаться один, два и более гетероатомов.

Во многих гетероциклических соединениях электронное строение связей в кольце такое же, как и в ароматических соединениях. Поэтому типичные гетероциклические соединения условно обозначают не только формулами, содержащими чередующиеся двойные и одинарные связи, но и формулами, в которых сопряжение p -электронов обозначается кружком, вписанным в формулу.

Особенности азотсодержащих гетероциклических соединений:

1) среди азотсодержащих соединений особенно много веществ циклического строения;

2) наибольший интерес представляют те из них, где атомы азота входят в состав циклов наряду с углеродными атомами, как атомы кислорода – в циклические молекулы глюкозы, рибозы, дезоксирибозы;

3) соединения, содержащие циклы, в состав которых наряду с атомами углерода входят атомы других элементов, называются гетероциклическими (греч. «гетерос» – другой);

4) возможность существования разнообразных гетероциклов – еще одна из причин неисчерпаемого многообразия органических веществ.

Пиридин как вид азотсодержащего гетероциклического соединения. Его особенности:

1) это шестичленное гетероциклическое соединение с одним гетероатомом азота в цикле:

2) это бесцветная жидкость с неприятным запахом, хорошо растворимая в воде;

3) пиридин и его гомологи содержатся в каменноугольной смоле, которая и служит источником их получения;

4) на основании структурной формулы можно высказать двоякое суждение о свойствах пиридина;

5) наличие двойных связей в молекуле указывает на его высокую реакционноспособность, а сходство по строению с бензолом позволяет предположить, что вещество обладает большой химической способностью;

6) пиридин также имеет и много общего с бензолом по строению и свойствам.

В молекуле бензола каждый атом углерода, находясь в состоянии sр2-гибридизации, три электрона затрачивает на образование δ-связей и один электрон – на образование общего для молекулы π-облака (при боковом перекрывании облаков шести р-электронов). В молекуле пиридина одну группу СН заменяет атом азота, и он «поставляет» два электрона на установление δ-связей с двумя соседними углеродными атомами и один электрон – в систему π-облака, при этом, как и в молекуле бензола, образуется устойчивый секстет электронов. У атома азота остается после этого еще пара свободных электронов;

7) пиридин, как и бензол, устойчив по отношению к окислителям: он не обесцвечивает раствор перманганата калия даже при нагревании;

8) пиридин нитруется, реакция идет в более жестких условиях, чем у бензола, образуется нитропиридин.

Гетероциклическое соединение пиридин – это азотистое основание ароматического характера.

Способы применения пиридина: 1) ароматические и основные свойства пиридина используются при синтезе разного рода лекарственных препаратов, красителей, гербицидов; 2) также пиридин используется как растворитель для денатурирования этанола.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]