- •1) Электрические заряды. Точечный заряд. Закон Кулона.
- •2) Напряженность электрического поля
- •3) Принцип суперпозиции электрических полей.
- •4) Поток вектора напряженности поля.
- •5) Теорема Остроградского – Гаусса.
- •6) Электрическое поле равномерно заряженной плоской поверхности.
- •7) Электрическое поле равномерно заряженной цилиндрической поверхности.
- •8) Электрическое поле равномерно заряженной сферической поверхности.
- •9) Электрическое поле равномерно заряженного шара.
- •10)Работа сил электрического поля. Потенциал.
- •11) Эквипотенциальные поверхности. Связь между напряженностью электрического поля и потенциалом.
- •12) Поле в. Сила Лоренца.
- •13) Закон Био-Савара.
- •14) Циркуляция и поток вектора в.
- •15) Поле прямого тока.
- •16) Поле солиноида.
- •17) Сила Ампера.
- •18) Работа поля в при перемещении контура с током
- •19) Виды поляризации диэлектриков
- •20) Поляризованность р.
- •21) Свойства поля вектора р.
- •22) Вектор d.
- •23) Условия на границе двух диэлектриков для векторов b и d
- •24) Намагничение вещества, намагниченность j.
- •25) Циркуляция вектора j
- •26) Вектор h
- •27) Граничные условия для b и h
- •28) Уравнения Максвелла ( в интегральной форме)
- •29) Законы геометрической оптики
- •30) Принцип Ферма. Закон преломления
- •31) Явление полного отражения
- •32) Оптическая система. Кардинальные плоскости
- •33) Формула оптической системы
- •34) Тонкая линза. Формула линзы
- •35) Ход лучей в тонких линзах
- •36) Построение изображения в собирающей линзе
- •37) Построение изображения в рассеивающей линзе
- •38) Интерференция света. Когерентные источники
- •39) Интерференция от двух когерентных источников
- •40) Бипризма Френеля
- •41) Интерференция при отражении от тонких плёнок
- •42) Кольца Ньютона
- •43) Дифракция света. Принцип Гюйгенса-Френеля
- •44) Зоны Френеля
- •45) Диаграмма Френеля
- •46) Дифракция Френеля от круглого отверстия
- •47) Дифракция Френеля от непрозрачного круглого диска
- •48) Дифракционная решётка
- •49) Закономерности в атомных спектрах
- •50) Опыт по рассеянию альфа частиц
- •51) Модель атома Резерфорда
- •52) Постулаты Бора
- •53) Элементарная боровская теория водородоподобного атома
- •54) Гипотеза де Бройля
- •55) Принцип неопределённости
- •56) Уравнение Шрёдингера
- •58) Таблица Менделеева. Состав и характеристики атомного ядра.
- •59) Масса и энергия связи ядра
- •60) Радиоактивность. Виды радиоактивности
- •61) Альфа-распад
- •62) Бета-распад
- •Основные формулы.
35) Ход лучей в тонких линзах
Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F', которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F.
Рисунок 3.3.2.
Преломление параллельного пучка лучей в собирающей (a) и рассеивающей (b) линзах. Точки O1 и O2 – центры сферических поверхностей, O1O2 – главная оптическая ось, O – оптический центр, F – главный фокус, F' – побочный фокус, OF' – побочная оптическая ось, Ф – фокальная плоскость
Основное свойство линз – способность давать изображения предметов. Изображения бывают прямыми и перевернутыми, действительными и мнимыми, увеличенными и уменьшенными.
36) Построение изображения в собирающей линзе
Луч, падающий на линзу, параллельно оптической оси. После преломления через линзу луч проходит через фокус, соответствующий этой оси.
Луч, проходящий через центр линзы. При прохождении через линзу этот луч практически не изменяет своего направления.
Луч, проходящий через фокус до линзы. После преломления через линзу луч распространяется параллельно оси соответствующий этому фокусу.
Потом находим точку пересечения всех лучей.
37) Построение изображения в рассеивающей линзе
38) Интерференция света. Когерентные источники
Явление образования чередующихся полос усиления и ослабления интенсивности света называется интеpфеpенцией. Интеpфеpенция света наблюдается в специальных условиях при наложении друг на друга двух или большего числа пучков света. Основным условием наблюдения интеpфеpенции волн является их когерентность.
Волны называются когерентными, если разность фаз остается постоянной во времени.
Когерентные источники получают, разделив световую волну, идущую от одного источника на две.
Опыт Юнга
Томас Юнг наблюдал интерференцию от двух источников, прокалывая на малом расстоянии (d ≈ 1мм) два маленьких отверстия в непрозрачном экране. Отверстия освещались светом от солнца, прошедшим через малое отверстие в другом непрозрачном экране.
Интерференционная картина наблюдалась на экране, удаленном на расстоянии L ≈ 1м от двух источников. Так, впервые в истории, Т. Юнг определил длины световых волн.
При использовании лазера в качестве источника света необходимость в экране отпадает.
39) Интерференция от двух когерентных источников
40) Бипризма Френеля
Две призмы с малым преломляющим углом θ имеют одну общую грань и изготовлены из одного куска стекла. При освещении
бипризмы Френеля монохроматическим светом от источника,
расположенного на расстоянии а, на экране будет наблюдаться картина
чередующихся светлых и темных полос.
ширина
интерференционной полосы:
число
интерференционных полос:
