
- •Содержание
- •1 Основные понятия теории механизмов и машин…. 5
- •5 Синтез механизмов…………………………………………….. 71
- •5.1 Лекция 11 …………………………………………………………….. 71
- •5.1.1 Общие методы синтеза механизмов………………………………. 71
- •1 Основные понятия теории механизмов и машин
- •1.1 Лекция
- •1.1.2 Машина
- •Основные понятия
- •Основные виды механизмов
- •2 Структурный анализ и синтез механизмов
- •2.1 Лекция 2
- •2.1.1 Определение числа степеней свободы кинематической цепи
- •2.1.2 Замена высших кинематических пар цепями с низшими парами
- •2.2 Лекция
- •2.2.1 Структурная классификация плоских механизмов
- •3.1 Лекция 4
- •3.1.1 Задачи кинематики
- •3.1.2 Графический метод кинематического исследования
- •3.1.3 Графическое дифференцирование. Графическое интегрирование
- •3.1.4 Графический метод как алгоритм решения задачи с помощью
- •3.2 Лекция 5
- •3.2.1 Метод планов скоростей и ускорений
- •3.2.2 Аналитический метод кинематического исследования
- •4 Динамика механизмов и машин
- •4.1 Лекция 6
- •4.1.1 Задачи динамики
- •4.1.2 Силовой расчет механизмов
- •4.1.3 Кинетостатика групп Ассура второго класса
- •4.1.4 Кинетостатика начального звена
- •4.2 Лекция 7
- •4.2.1 Определение уравновешивающей силы (момента) по методу
- •4.2.2 Учет трения в механизмах
- •4.2.3 Трение скольжения. Трение в поступательных кинематических
- •Из рисунка 20а:
- •4.2.4 Трение на наклонной плоскости
- •4.2.5 Учет формы направляющих, приведенный коэффициент трения
- •4.3 Лекция 8
- •4.3.1 Трение во вращательных парах
- •4.3.2 Трение в цапфах
- •4.3.3 Трение в пятах
- •4.3.4 Трение гибких тел
- •4.3.5 Трение качения
- •4.4 Лекция 9.
- •4.4.1 Энергетический баланс машины
- •4.4.2 Коэффициент полезного действия системы механизмов
- •4.4.3 Приведение сил и масс в механизмах. Уравнение движения
- •4.4.4 Уравновешивание сил инерции вращающихся звеньев
- •4.5 Лекция 10
- •4.5.1 Электро-, гидро-, пневмопривод механизмов
- •4.5.2 Выбор типа привода
- •5 Синтез механизмов
- •5.1 Лекция 11
- •5.1.1 Общие методы синтеза механизмов
- •5.1.2 Синтез механизмов с низшими кинематическими парами
- •5.1.3 Методы оптимизации в синтезе механизмов с применением
- •5.2 Лекция 12
- •5.2.1 Синтез зубчатых механизмов
- •5.2.2 Основной закон зацепления.
- •5.2.3 Кинематика зубчатых механизмов.
- •5.2.4 Эвольвентное зацепление
- •5.2.5 Методы изготовления зубчатых колес
- •5.3 Лекция 13
- •5.3.1 Размеры зубчатых колес, формируемые при нарезании
- •5.3.2 Геометрические показатели качества зацепления
- •5.4 Лекция 14
- •5.4.1 Кулачковые механизмы. Типы механизмов. Принципы
- •5.4.2 Динамический синтез кулачковых механизмов
- •5.4.3 Построение профиля кулачка
- •5.4.4 Силовое замыкание высшей кинематической пары
2.1.2 Замена высших кинематических пар цепями с низшими парами
Высшая кинематическая пара четвертого класса обеспечивает две степени свободы в относительном движении звеньев, поэтому данное относительное движение имеет сложный характер (оно включает в себя несколько взаимосвязанных простых движений). В то же время низшая пара пятого класса обеспечивает простейшее относительное движение – вращательное или поступательное (эти два вида движения хорошо изучены и для их анализа разработаны относительно простые методы). Таким образом, с точки зрения методов исследования работы механизма, удобнее иметь дело с низшими кинематическими парами пятого класса. Оказывается, что высшие пары четвертого класса можно заменить эквивалентными с точки зрения работы механизма цепями с низшими парами пятого класса. При этом необходимо выполнить следующие условия:
- число степеней свободы механизма при замене не должно изменяться;
- характер мгновенного относительного движения звеньев также должен оставаться прежним.
Для выполнения этих условий замена производится в следующем порядке (рисунок 6а):
- проводится общая нормаль к соприкасающимся профилям, составляющим высшую пару, в точке их контакта;
- определяется положение центров кривизны этих профилей в данной точке контакта и в каждом центре кривизны ставится шарнир;
- указанные шарниры соединяются жестким стержнем, в результате формируется фиктивное звено, которое в заданном механизме отсутствует;
- фиктивное звено указанными выше шарнирами присоединяется к тем звеньям механизма, которые входят в заменяемую высшую пару.
На рисунке 6 приведены примеры замены высшей кинематической пары для различных типов механизмов.
Примечания:
1) имеются строгие доказательства того, что представленная последовательность действий обеспечивает выполнение условий, предъявляемых при замене высших пар. Однако в данном коротком курсе эти доказательства упущены;
2) если профиль представляет собой одну единственную точку (профиль постоянно работает одной точкой), то его радиус кривизны равен нулю и центр кривизны находится в этой же точке (рисунок 6б);
3) если профиль представляет собой прямую линию (работ ют разные точки этой прямой), то вместо шарнира ставится ползун, который движется вдоль этого прямолинейного профиля (действительно, центр кривизны прямолинейного профиля находится в бесконечности и шарнир, расположенный в бесконечности, обеспечивает вращательное движение с бесконечно большим радиусом вращения, т.е. поступательное движение. Таким образом, фиктивное звено с прямолинейным профилем соединяется поступательной кинематической парой) – рисунок 6в;
4) на рисунке 6г приведен пример замены высшей пары, в котором, представлены обе особенности, отраженные в п.п. 2 и 3 данного примечания (в данном случае шарнир располагает непосредственно на ползуне);
5) при замене высших кинематических пар лишние степени свободы автоматически исчезают. Поэтому, если при замене число степеней свободы уменьшилось, значит в механизме имеются лишние степени свободы. Таким образом, число степеней свободы заменяющего механизма совпадает с числом
действующих (без лишних степеней свободы) степеней свобды заданного механизма (рисунок 7).
Каждая замена справедлива для данного мгновенного положения механизма. В другом положении замена будет аналогичной, но размеры звеньев заменяющей цепи изменятся, т.к. изменятся радиусы кривизны профилей в новой точке контакта. (Поэтому данный искусственный прием может использоваться только как метод исследования механизмов, но не как метод их проектирования).