
- •Содержание
- •1 Основные понятия теории механизмов и машин…. 5
- •5 Синтез механизмов…………………………………………….. 71
- •5.1 Лекция 11 …………………………………………………………….. 71
- •5.1.1 Общие методы синтеза механизмов………………………………. 71
- •1 Основные понятия теории механизмов и машин
- •1.1 Лекция
- •1.1.2 Машина
- •Основные понятия
- •Основные виды механизмов
- •2 Структурный анализ и синтез механизмов
- •2.1 Лекция 2
- •2.1.1 Определение числа степеней свободы кинематической цепи
- •2.1.2 Замена высших кинематических пар цепями с низшими парами
- •2.2 Лекция
- •2.2.1 Структурная классификация плоских механизмов
- •3.1 Лекция 4
- •3.1.1 Задачи кинематики
- •3.1.2 Графический метод кинематического исследования
- •3.1.3 Графическое дифференцирование. Графическое интегрирование
- •3.1.4 Графический метод как алгоритм решения задачи с помощью
- •3.2 Лекция 5
- •3.2.1 Метод планов скоростей и ускорений
- •3.2.2 Аналитический метод кинематического исследования
- •4 Динамика механизмов и машин
- •4.1 Лекция 6
- •4.1.1 Задачи динамики
- •4.1.2 Силовой расчет механизмов
- •4.1.3 Кинетостатика групп Ассура второго класса
- •4.1.4 Кинетостатика начального звена
- •4.2 Лекция 7
- •4.2.1 Определение уравновешивающей силы (момента) по методу
- •4.2.2 Учет трения в механизмах
- •4.2.3 Трение скольжения. Трение в поступательных кинематических
- •Из рисунка 20а:
- •4.2.4 Трение на наклонной плоскости
- •4.2.5 Учет формы направляющих, приведенный коэффициент трения
- •4.3 Лекция 8
- •4.3.1 Трение во вращательных парах
- •4.3.2 Трение в цапфах
- •4.3.3 Трение в пятах
- •4.3.4 Трение гибких тел
- •4.3.5 Трение качения
- •4.4 Лекция 9.
- •4.4.1 Энергетический баланс машины
- •4.4.2 Коэффициент полезного действия системы механизмов
- •4.4.3 Приведение сил и масс в механизмах. Уравнение движения
- •4.4.4 Уравновешивание сил инерции вращающихся звеньев
- •4.5 Лекция 10
- •4.5.1 Электро-, гидро-, пневмопривод механизмов
- •4.5.2 Выбор типа привода
- •5 Синтез механизмов
- •5.1 Лекция 11
- •5.1.1 Общие методы синтеза механизмов
- •5.1.2 Синтез механизмов с низшими кинематическими парами
- •5.1.3 Методы оптимизации в синтезе механизмов с применением
- •5.2 Лекция 12
- •5.2.1 Синтез зубчатых механизмов
- •5.2.2 Основной закон зацепления.
- •5.2.3 Кинематика зубчатых механизмов.
- •5.2.4 Эвольвентное зацепление
- •5.2.5 Методы изготовления зубчатых колес
- •5.3 Лекция 13
- •5.3.1 Размеры зубчатых колес, формируемые при нарезании
- •5.3.2 Геометрические показатели качества зацепления
- •5.4 Лекция 14
- •5.4.1 Кулачковые механизмы. Типы механизмов. Принципы
- •5.4.2 Динамический синтез кулачковых механизмов
- •5.4.3 Построение профиля кулачка
- •5.4.4 Силовое замыкание высшей кинематической пары
4.3.2 Трение в цапфах
Первая гипотеза. Удельное давление по опорной поверхности распределяется равномерно – q=const (рисунок 25 а).
Выделим бесконечно малый элемент поверхности, определяемый центральным углом d, на расстоянии от вертикальной оси. На этот элемент действует нормальная реакция dRN, которая определяется через удельное давление и площадь выделенного элемента:
Сумма элементарных нормальных реакций в проекции на вертикальную ось уравновешивает радиальную силу, действующую на цапфу:
П
олучается
промежуточный результат, определяющий
величину удельного давления:
Однако этот результат имеет большое самостоятельное значение. Он показывает, что удельное давление (а в расчетах на прочность это напряжение смятия на поверхности контактирующих деталей) определяется делением радиальной силы на проекцию площади контакта на диаметральную плоскость вала (а не на полную величину контактной площади). Это положение широко применяется при расчетах деталей машин.
Определим величину элементарной силы трения, действующей на выделенный элемент, и элементарный момент трения от этой силы:
,
.
Просуммировав элементарные моменты от силы трения по всей площади контакта, получаем значение момента трения на поверхности цапфы по этой гипотезе:
,
.
Здесь f I' – приведенный коэффициент трения, вычисляемый по первой гипотезе.
Вторая гипотеза. Расчет ведется с учетом износа поверхности контакта. При этом принимается следующее допущение – изнашивается подшипник, а вал остается неизменным. Это допущение вполне отвечает реальной ситуации, т.к. вал воспринимает все нагрузки от передач, работает в тяжелом режиме, обычно выполняется из качественных сталей, опорные поверхности часто подвергаются термическому упрочнению. С целью уменьшения потерь на трение (для формирования антифрикционной пары) подшипники скольжения выполняются из более мягких материалов, имеющих в паре со стальным валом пониженные коэффициенты трения (бронзы, баббиты и др.). Понятно, что именно более мягкий материал будет изнашиваться в первую очередь.
В результате износа подшипника вал «просядет» на некоторую величину (рисунок 25 б). Из теории износа известно, что величина износа пропорциональна удельному давлению и относительной скорости трущихся поверхностей. Но в данном случае относительная скорость – это окружная скорость на поверхности цапфы, которая во всех точках одна и та же. Поэтому величина износа будет больше в тех местах, где больше удельное давление, т.е. величина износа пропорциональна удельному давлению. На рисунке 25б показаны два положения вала – в начале работы и после того, как произошел износ поверхности. Изношенный слой представляет собой серповидную фигуру. Но так как износ пропорционален удельному давлению, то эту серповидную фигуру можно принять за эпюру удельного давления, выполненную в некотором масштабе. Как видно, в результате износа происходит перераспределение удельного давления на поверхности трения. Максимальное давление qmax располагается на линии действия радиальной нагрузки, действующей на вал. Так как вал в результате износа подшипника опустился на некоторую величину, то расстояние по вертикали для любой точки вала между ее первоначальным и новым положениями одно и то же (и равно qmax). Поэтому текущее значение удельного давления на выделенном элементе, можно выразить приближенно из криволинейного прямоугольного треугольника (рисунок 25 б):
q = qmax . cos
Дальнейший ход решения задачи ничем не отличается от решения по первой гипотезе. В результате получают следующие зависимости для определения момента сил трения по второй гипотезе:
,
.
Таким образом, происходит уменьшение приведенного коэффициента трения (примерно на 20%) и, соответственно, снижение потерь на трение и увеличение коэффициента полезного действия. Вот почему все новые машины обязательно проходят обкатку при неполной мощности. В результате обкатки происходит первичный износ поверхности (сглаживание микронеровностей), происходит приработка поверхностей («притирка» поверхностей одна к другой). Только после этого машина может использоваться на полную мощность.